
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
SOFTWARE TESTING TOOLS:

METRICS FOR MEASUREMENT OF EFFECTIVENESS
ON PROCEDURAL AND OBJECT-ORIENTED

SOURCE CODE

by

Bernard J. Bossuyt
Byron B. Snyder

September 2001

 Thesis Advisor: J. Bret Michael
 Second Reader: Richard H. Riehle

Approved for public release; distribution is unlimited.

Report Documentation Page

Report Date
30 Sep 2001

Report Type
N/A

Dates Covered (from... to)
-

Title and Subtitle
Software Testing Tools: Analyses of Effectiveness on
Procedural and Object-Oriented Source Code

Contract Number

Grant Number

Program Element Number

Author(s)
Bernard J. Bossuyt & Byron B. Snyder

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Research Office Naval Postgraduate School Monterey,
Ca 93943-5138

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
209

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
Software Testing Tools: Analyses of Effectiveness on Procedural and Object-Oriented
Source Code
6. AUTHOR(S) Bernard J. Bossuyt & Byron B. Snyder

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is
unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 The levels of quality, maintainability, testability, and stability of software can be improved
and measured through the use of automated testing tools throughout the software development
process. Automated testing tools assist software engineers to gauge the quality of software by
automating the mechanical aspects of the software-testing task. Automated testing tools vary
in their underlying approach, quality, and ease-of-use, among other characteristics. Evaluating
available tools and selecting the most appropriate suite of tools can be a difficult and time-
consuming process. In this thesis, we propose a suite of objective metrics for measuring tool
characteristics, as an aide in systematically evaluating and selecting automated testing tools.
Future work includes further research into the validity and utility of this suite of metrics,
conducting similar research using a larger software project, and incorporating a larger set of
tools into similar research.

15. NUMBER OF
PAGES 209

14. SUBJECT TERMS software testing tool metrics, procedural, object-oriented, software testing
tools, metrics, testing tool evaluation, testing tool selection,

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

The levels of quality, maintainability, testability, and stability of software can be

improved and measured through the use of automated testing tools throughout the

software development process. Automated testing tools assist software engineers to

gauge the quality of software by automating the mechanical aspects of the software-

testing task. Automated testing tools vary in their underlying approach, quality, and ease-

of-use, among other characteristics. Evaluating available tools and selecting the most

appropriate suite of tools can be a difficult and time-consuming process. In this thesis,

we propose a suite of objective metrics for measuring tool characteristics, as an aide in

systematically evaluating and selecting automated testing tools. Future work includes

further research into the validity and utility of this suite of metrics, conducting similar

research using a larger software project, and incorporating a larger set of tools into

similar research.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. RESEARCH ISSUES ..1

1. Identifying Metrics...2
2. Testing of Procedural versus Object-oriented Source Code............2
3. Evaluating Tools ..2

C. CASE STUDY: CSMA/CD LAN DISCRETE-EVENT SIMULATION
PROGRAM ..2

II. RELATED WORK ..5
A. IEEE STANDARD 1175 WORKING GROUP’S TOOL-

EVALUATION SYSTEM...5
1. Analyzing User Needs ..5
2. Establishing Selection Criteria ...8
3. Tool Search ...10
4. Tool Selection ...10
5. Reevaluation ...14
6. Summary...14

B. INSTITUTE FOR DEFENSE ANALYSES REPORTS.............................15
C. SOFTWARE TECHNOLOGY SUPPORT CENTER’S SOFTWARE

TEST TECHNOLOGIES REPORT..16

III. METHODOLOGY ..17
A. TOOL SEARCH ..17

1. BoundsChecker ..17
a. Summary..17
b. Features...17

2. C-Cover...17
a. Summary..17
b. Features...17

3. CTC++ (Test Coverage Analyzer for C/C++)18
a. Summary..18
b. Features...18

4. Cantata++ ...19
a. Summary..19
b. Features...19

5. ObjectChecker/Object Coverage/ObjectDetail...............................19
a. Summary..19
b. Features...20

6. Panorama C/C++ ...20
 vii

a. Summary..20
b. Features...20

7. TCAT C/C++..21
a. Summary..21
b. Features...21

B. TOOLS SELECTED FOR EVALUATION..21
1. LDRA TESTBED...21

a. Summary..21
b. Static Analysis Features ...22
c. Dynamic Analysis Features ..24

2. Parasoft Testing Products ...25
a. Summary..25
b. C++ Test features ..26
c. CodeWizard features ...26
d. Insure++ features..27

3. Telelogic Products..27
a. Summary..27
b. Features...27

C. SOFTWARE QUALITY METRICS ...28
1. Procedural (Traditional) Software Metrics.....................................29
2. Object-Oriented Software Metrics...31

D. PROPOSED SOFTWARE TESTING TOOL METRICS.........................34
1. Metrics for Tools Testing Procedural Software..............................34

a. Human Interface Design (HID)...34
b. Maturity & Customer Base (MCB) ..35
c. Tool Management (TM)..36
d. Ease of Use (EU)...36
e. User Control (UC)...37
f. Test Case Generation (TCG) ..37
g. Tool Support (TS)..39
h. Estimated Return on Investment (EROI)...............................39
i. Reliability (Rel) ...40
j. Maximum Number of Classes (MNC)....................................40
k. Maximum Number of Parameters (MNP)40
l. Response Time (RT)..40
m. Features Support (FS) ..40

2. Metrics for Tools Used to Test Object-Oriented Software40
3. Difference between Procedural Testing Tool Metrics and

Object-oriented Testing Tool Metrics..41
E. PERFORM TESTS..41

1. LDRA Testbed..41
a. Set-up...41
b. Problems During Execution ...41

2. Parasoft ...42
a. Set-up...42

 viii

b. Problems During Execution ...42
3. Telelogic ..43

a. Set-up...43
b. Problems During Execution ...43

IV. ANALYSIS ...45
A. TOOL PERFORMANCE ...45

1. LDRA Testbed..45
a. Procedural ...45
b. Functional ...49
c. Object-Oriented ...54
d. Reporting Characteristics ...55

2. Parasoft ...58
a. Procedural ...58
b. Functional ...58
c. Object-Oriented ...59
d. Reporting Characteristics ...61

3. Logiscope ..64
a. Procedural ...64
b. Functional ...66
c. Object-Oriented ...66
d. Reporting Characteristics ...66

B. TESTING TOOL METRICS..67
1. Human Interface Design..68
2. Test Case Generation...69
3. Reporting Features ..70
4. Response Time..70
5. Feature Support ...70
6. Metric Suites Supported..71
7. Maximum Number of Classes...71
8. Object-Oriented Software Quality Metrics71
9. Tool Management ..72
10. User Control ...72
11. Other Testing Tool Metrics...72

V. RESULTS ...73
A. TESTING TOOL RESULTS..73
B. TESTING TOOL METRIC RESULTS...74

VI. CONCLUSION ..77
A. SUMMARY ..77
B. RECOMMENDATIONS FOR FUTURE WORK......................................77

APPENDIX A. PROCEDURAL CODE ..79

APPENDIX B. FUNCTIONAL CODE..95

APPENDIX C. OBJECT-ORIENTED CODE..125
C-1 SIMULATION.CPP ..126

 ix

C-2 CONSTANTS.H...146
C-3 CLOCK.CPP..147
C-4 CLOCK.H...150
C-5 EVENTLIST.CPP..151
C-6 EVENTLIST.H ..156
C-7 IDLIST.CPP...157
C-8 IDLIST.H..160
C-9 NETWORK.CPP ..161
C-10 NETWORK.H..163
C-11 STATIONLIST.CPP ...164
C-12 STATIONLIST.H ..167

APPENDIX D. CSMA/CD UML DIAGRAM..169
D-1 CONCEPTUAL MODEL ...170
D-2 ACTIVITY DIAGRAM FOR NETWORK SIMULATION171
D-3 ACTIVITY DIAGRAM FOR PROCESSING PACKET-ARRIVAL

EVENT..172
D-4 ACTIVITY DIAGRAM FOR PROCESSING TRANSMISSION-

ATTEMPT EVENTS...173
D-5 ACTIVITY DIAGRAM FOR PROCESSING COLLISION-CHECK

EVENTS..174
D-6 ACTIVITY DIAGRAM FOR PROCESSING PACKET-DEPARTURE

EVENTS..175
D-7 DESIGN CLASS DIAGRAM ...176
D-8 INTERACTION DIAGRAM FOR NETWORK SIMULATION...............177
D-9 INTERACTION DIAGRAM FOR PROCESSING PACKET-

ARRIVAL EVENTS..178
D-10 INTERACTION DIAGRAM FOR PACKET-DEPARTURE EVENT....179
D-11 GENERIC INTERACTION DIAGRAM FOR PROCESSING

TRANSMISSION-ATTEMPT AND COLLISION-ATTEMPT
EVENT..180

D-12 COLLABORATION DIAGRAM FOR PROCESSING PACKET-
ARRIVAL EVENTS..181

D-13 COLLABOARION DIAGRAM FOR PROCESSINGG PACKET-
DEPARTURE EVENTS..182

D-14 COLLABORATION DIAGRAM FOR PROCESSING
TRANSMISSION-ATTEMPT EVENTS...183

D-15 COLLABORATION DIAGRAM FOR PROCESSING COLLISION-
CHECK EVENTS..184

APPENDIX E. TESTING TOOL METRICS RECORD SHEET185

APPENDIX F. CSMA/CD FLOW CHART ...189

INITIAL DISTRIBUTION LIST ...191

 x

LIST OF FIGURES

Figure 1: Needs Analysis Data Collection Form (From Poston)..7
Figure 2. Tool Selection Criteria Sheet...9
Figure 3. Tool-Organization Form (From Poston) ...11
Figure 4. Tool-Platform Form (From Poston) ..12
Figure 5: Procedural Dynamic Coverage Analysis Overall Report..45
Figure 6: Procedural Statement Execution History Summary...46
Figure 7: Procedural Branch/Decision Execution History Summary46
Figure 8: Halstead Metrics for procedural code ..47
Figure 9: LCSAJ and Unreachability for procedural code ...47
Figure 10: Procedural Mandatory Standards Violations..48
Figure 11: Procedural Checking Standards Violations...48
Figure 12: Procedural Optional Standards Violations ..49
Figure 13: Procedural Global Basic Information..49
Figure 14: Functional Dynamic Coverage Analysis Overall Report50
Figure 15: Functional Statement Execution History Summary ...50
Figure 16: Functional Branch/Decision Execution History Summary51
Figure 17: Halstead Metrics for functional code ...52
Figure 18: LCSAJ and Unreachability for functional code ..52
Figure 19: Functional Mandatory Standards Violations..53
Figure 20: Functional Checking Standards Violations ...53
Figure 21: Functional Optional Standards Violations ..54
Figure 22: Functional Global Basic Information ..54
Figure 23: Halstead Metrics for object-oriented code ...55
Figure 24: Object-Oriented LCSAJ and Unreachability for procedural code55
Figure 25: Object-Oriented Mandatory Standards Violations ...56
Figure 26: Object-Oriented Checking Standards Violations ..57
Figure 27: Object-Oriented Optional Standards Violations..57
Figure 28: Object-Oriented Global Basic Information ...58
Figure 29: Parasoft Procedural Static Analysis Report...58
Figure 30: Parasoft Functional Static Analysis Report...59
Figure 31: Parasoft Functional Dynamic Analysis Report ...60
Figure 32: Parasoft Object-Oriented Static Analysis Summary Table60
Figure 33: Parasoft Object-Oriented Dynamic Report ...61
Figure 34: Parasoft Testing Status Report ..62
Figure 35: Parasoft Static Analysis Report...63
Figure 36: Parasoft Method Test Status..64
Figure 37: Parasoft Method Test Case Detailed Report ...64
Figure 38: Logiscope Procedural Rule Violations..65
Figure 39: Logiscope Rule Violation Report..67
Figure D-1: Conceptual Model ...170
Figure D-2: Activity Diagram for Network Simulation ...171
Figure D-3: Activity Diagram for Processing Packet-Arrival Events172

 xi

Figure D-4: Activity Diagram for Processing Transmission-Attempt Events......................173
Figure D-5: Activity Diagram for Processing Collision-Check Events................................174
Figure D-6: Activity Diagram for Processing Packet-Departure Events..............................175
Figure D-7: Design Class Diagram...176
Figure D-8: Interaction Diagram for Network Simulation ...177
Figure D-9: Interaction Diagram for Processing Packet-Arrival Events178
Figure D-10: Interaction Diagram for Packet Departure Event..179
Figure D-11: Generic Interaction Diagram for Processing Transmission-Attempt and

Collision Attempt Event ..180
Figure D-12: Collaboration Diagram for Processing Packet-Arrival Events181
Figure D-13: Collaboration Diagram for Processing Packet-Diagram Events.....................182
Figure D-14: Collaboration Diagram for Processing Transmission-Attempt Events...........183
Figure D-15: Collaboration Diagram for Processing Collision-Check Events.....................184
Figure F-1: CSMA/CD Simulation Program Flow Chart ...189

 xii

LIST OF TABLES

Table 1. Human-Interface Design Scores ...69
Table 2. Test-Case Generation Scores ..70
Table 3. Summary of Tool Findings ...73

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

ACKNOWLEDGMENTS

Sincere appreciation to

Dr. J. Bret Michael & Mr. Richard Riehle

for their guidance and support in this endeavor.

We appreciate the assistance and product evaluation copies

provided by the following testing tool vendors:

LDRA

Parasoft

Telelogic

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

I. INTRODUCTION

A. PROBLEM STATEMENT

The life cycle of a software component begins with the conceptualization of an

information system, and ends with the retirement of the system. Although there have

been great improvements in standardizing the software development process, there has

yet to be developed a process which guarantees the creation of error-proof software.

Testing can be used to assess the quality of software components. However, testing can

require a lot of computations when the software component is tested after each step of the

software development process or tested to a high-level of assurance. In addition, testing

of a software component can be labor intensive, and thus expensive in terms of human

capital (e.g., software engineers, project managers, domain experts).

Automated testing tools assist software engineers to gauge the quality of software

by automating the mechanical aspects of the software-testing task. Automated testing

tools vary in their underlying approach, quality, and ease-of-use, among other

characteristics. In addition, the selection of testing tools needs to be predicated on

characteristics of the software component to be tested. But how does a project manager

choose the best suite of testing tools for testing a particular software component?

We envision the benefits of this research to the Department of the Navy to be

twofold. Firstly, the results of our research can be used by software engineers as a basis

for selecting the best type of tool or suite of tools for testing the software system under

test. Secondly, managers can apply the metrics in order to monitor and gauge the

effectiveness of specific combinations of testing tools for software-development projects

funded by the US Department of Defense.

B. RESEARCH ISSUES

The goal of this research is to provide project managers with assistance in

selecting tools by developing metrics for evaluating software testing tools, in terms of

their functionality, usability, and other select distinguishing characteristics.

1

1. Identifying Metrics

Automated testing tools vary in their ability to both detect known software defects

and convey information about these defects to the user of the tool. We developed a list of

metrics required to compare testing tools applied to both procedural and object-oriented

software.

2. Testing of Procedural versus Object-oriented Source Code

Similar to other software development tools, the focus of some testing tools is on

testing procedural software while other tools are tailored for testing object-oriented

software. Through our experiments, we have determined that the set of metrics used for

comparing tools for use in testing procedural software cannot be one-to-one mapped to

those for testing object-oriented software, although the two sets are not disjoint.

3. Evaluating Tools

Through the experimentation with different tools, we have identified metrics that

may be used when selecting a tool for a development project. This will assist future

efforts in evaluating testing tools’ individual strengths and weaknesses and how they

relate to the requirements of the software being developed (e.g., procedural vs. object-

oriented, vital vs. important).

C. CASE STUDY: CSMA/CD LAN DISCRETE-EVENT SIMULATION
PROGRAM

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) is a widely

used contention-based access protocol in networks. Prior to transmitting, a station on the

network samples the network at its point of connection. If it determines the network is

busy, the station delays it transmission. However, if it does not detect any activity it may

begin transmitting.

Although a station will not transmit when it detects activity, it is still possible for

two station’s transmissions to collide. Such a situation occurs when one station begins to

transmit prior to another station’s transmission reaching the first station’s connection

point. After transmitting its information, the station monitors the network. If a different

packet of information is detected on the network before its transmission has had enough

2

time to reach every station on the network, the station assumes its traffic did not reach its

destination.

When a collision is detected, all transmitting stations terminate their activity. The

station that first identifies the collision sends a jamming signal to all stations signaling

them to cease any transmissions. All stations then wait for the jamming signal to end

plus a previously defined period of silence. At that point, any station may begin

transmitting.

At the end of the silent period, the previously transmitting stations, and possibly

others that now have traffic to send, would detect no activity on the network and

therefore would immediately attempt transmission. This would result in another

collision. Continuing this cycle would prevent any further traffic on the network.

The description of the protocol to this point, in which a station will transmit with

a probability of 1 upon detecting that the bus is available, is classified as non-persistent.

To prevent this fatal infinite cycle, p-persistent networks were created. In such networks,

a station transmits with probability of p and delays transmission with probability of (1 –

p). Therefore, following a collision, it is not guaranteed that all stations with traffic will

attempt to transmit at the end of the silence period. This enables one station’s message to

be detected by other stations before they retry to transmit, allowing the pending message

transmission to take place unimpeded.

The experiments conducted were performed on three versions of programs that

simulate a CSMA/CD network. The first version is a procedural program developed by

Sadiku and Ilyas with the modification of one line so that it could be operated on a wide

range of C and C++ compilers.1 This version will be referred to as the procedural

version. Appendix F contains the flow chart of the simulation program.

This program was selected for this project for two purposes. First, it uses several

blocks of code numerous times throughout the program. This factor lends the program to

implementation through the use of functions in place of those blocks of code as was done

in the second version of the program, hereafter called the functional version. Second, it

1 Sadiku, M. and Ilyas, M., Simulation of Local Area Networks, Boca Raton, Florida. CRC Press,
1994, pp. 112-133.

3

simulates the interaction of several real-world items that lend themselves to being

represented by classes and objects. This approach to simulating the network was used in

the third version of the program, which we refer to as the object-oriented version of the

program.

4

II. RELATED WORK

A. IEEE STANDARD 1175 WORKING GROUP’S TOOL-EVALUATION
SYSTEM

In December of 1991, a working group of software developers and experienced

tool users completed the Reference Model for Computing System-Tool Interconnections,

IEEE Standard 1175.2 As an offshoot of their work, they also introduced a tool-

evaluation system. The system implements a set of forms which aides project managers

in gathering, organizing, and analyzing information on testing (and other) tools

efficiently and, if done correctly, effectively.

The system enables tool evaluators to record tool information in such a way to

provide an extensive picture of the tools being considered. The forms allow the

evaluators to access tool-dependent factors such as speed, user friendliness, and

reliability. They also allow evaluators to access environment-dependent factors such as

the cost of the tool, the tool’s affect on organizational policies and procedures, and tool

interaction with existing organization hardware and software assets. The data forms also

facilitate the weighting, rating, and summarizing selection criteria.

Using the forms, project managers have a systematic and repeatable process to

follow in selecting tools. The forms assist in developing a list of information needed to

select a tool and provide a means to collect, organize, and analyze that information. They

also enable evaluators to identify and prioritize user needs, to find what tools are

available and most importantly, to select a tool based on estimated cost-effectiveness.

The process is performed in five steps: analyzing user needs, establishing selection

criteria, tool search, tool selection, and reevaluation.

1. Analyzing User Needs

Just as a full assessment of the customer’s needs must be accomplished before

beginning a software development process, the first step of the tool selection process is to

accurately and completely identify the needs of the prospective tool users. A

comprehensive and correct needs analysis is vital to the tool selection process. All future

5

2 Poston, Robert R. and Sexton, Michael P., “Evaluating and Selecting Testing Tools”, IEEE Software,
May 1992, pp. 33-42.

decisions can be traced back to the results of the analysis. Additionally, the

effectiveness of the tool selected will be measured against the users’ needs that are

presented in the analysis, as well as those needs that the analysis overlooked.

The tool-selection process begins the needs analysis step with conversations with

the organization’s personnel responsible for tracking the company’s performance.

Speaking with such individuals provides the evaluator with a foundation by identifying

the organization’s current levels of productivity and quality. Additionally, some

organizations also have even higher long-range productivity-level goals. These

productivity and quality levels may enable the evaluator to readily eliminate some tools

that are not applicable for use in satisfying the organization’s goals.

Identifying the amount the organization invests in testing is the next step of the

needs analysis process. By combining the current level of testing investment and the

number, size and complexity of planned projects, the evaluator can estimate the amount

of investment the organization will likely be making on testing in the future. This will

aid the evaluator in predicting the likelihood that an investment in a testing tool will

provide a positive return on the investment.

Estimating the organization’s future testing performance levels is the third step of

the needs analysis. Using the data provided by the quality assurance personnel in step

one, the evaluator can make educated predictions on future performance. These are

generally better than current levels due to the experience and expertise gained in current

projects. Additionally, the evaluator must confer with organizational staff to identify any

planned adaptations to the current process that may affect testing effectiveness such as

hiring of more personnel or changes in procedures. The information gathered thus far is

placed in the needs analysis form shown in Figure 1.

The final step of the needs analysis process is the actual analysis of the

information mentioned above. Analysis of the information will reveal the expected cost

of tool implementation and estimated return on the investment. The organization must

weigh the expected improvement in productivity and quality versus the large financial

and temporal investment required to integrate an automated testing tool into the

6

Figure 1: Needs Analysis Data Collection Form (From Poston)

7

organizational procedures. If the organization expects increased projects placing much

greater load on the current testing assets with expectations of stable or increased

productivity and quality, the level and type of investment need to be further evaluated.

2. Establishing Selection Criteria

The second step of the tool selection process is to establish the criteria that will be

used to select the testing tool. The working group has developed a tool-selection criteria

form (Figure 2) that organizes several criteria in four groups. The first group is “general

criteria” that lists minimum acceptable productivity gain and quality gain. This group is

first because if a tool is not expected to provide the required amount of overall

productivity and quality improvement, then there is no need to further evaluate the other

criteria.

The second group is “environment-dependent criteria.” In this group the

evaluator determines the maximum amount the organization is willing to spend on tools,

organizational changes, platform changes, and tool-interconnection changes.

Organizational changes include the costs incurred to make any necessary changes to the

organization’s policies, techniques, standards, measurements, and training schedules.

Platform changes refer to the cost of making adaptations to existing hardware, operating

systems, software, and networking assets among others. Tool-interconnection changes

are the modifications that must be performed to ensure the data-exchange utilities can

continue to perform with the new tool.

If a large number of the expenditure amounts are low, the evaluator may decide to

report that the amounts given suggest either a lack of support for acquiring testing tools

or a lack of knowledge of the far-reaching implications of attempting to integrate a

testing tool into established practice. If the evaluator is unable to elicit enough

investment in advance, the assessment may continue. After the selection process has

been performed based on the other criteria, the remaining tools can be assessed according

to how they would affect each of the investment areas. Then the evaluator may make a

recommendation based on the tool which best suits the organization’s priorities.

If sufficient data can be collected and they indicate ample support for testing

tools, the criteria are then weighed. The weighting process brings together the

8

Figure 2. Tool Selection Criteria Sheet
with Tool Rating and Scoring Sheet (From Poston)

9

appropriate entities, which assign ranking to each criterion based on its perceived or

actual importance. Each item on the list must have a unique value. The process is useful

in moving the organization closer to a consensus on those requirements that are the most

important and empowers the users of tools and tool-generated information to provide

input to decision-makers.

3. Tool Search

Searching for available tools is the third step in the tool-selection process. The

actual search begins after the evaluator has developed an organizational profile. By

changing ‘tool name’ to ‘organization name’ on the “Tool-to-Organization,” “Tool-to-

Platform,” and “Tool-Interconnection” profile forms of IEEE 1175 (Figures 3-5), they are

converted to organizational profile forms. These forms are then completed to the extent

the organization deems to be necessary, while documenting any deviation from the

standard.

Once the profile of the organization is complete, it is used to eliminate tools from

the vast listings of tool surveys that are available from several sources listed in Poston

and Sexton. A search of current trade publications, academic journals, and Internet

search engines may also provide other prospective tools.

When the evaluator is satisfied with the list of potential tools, a request is made to

the suppliers of those tools for the most recent data available on the tool’s characteristics.

The recommended approach is to provide blank versions of the tool-profile forms from

IEEE 1175. Along with the completed forms, the evaluator should request current

purchase price, a list of current users who will be willing to discuss their experiences with

the tool, and trade articles, research or other independent sources of information that may

attest to the tool’s value to the testing process. The quality of response may be indicative

of the level of support the supplier will provide if the tool is selected. When the evaluator

is satisfied with the amount of responses, the tool selection process may begin.

4. Tool Selection

The evaluator is responsible for assessing how closely a tool compares to the

criteria developed in the second step (Figure 2). Using all of the information gathered on

a tool, the assessor assigns a rating of one if the tool exactly matches the set criteria. If

10

Tool name: Date:

Organization Interconnections Name of applicable standards

Job function
Primary user

Secondary user

Final user

Life cycle
Phase of initial use

Phases of intermediate use

Phase of final use

Support elements
Policies

Technologies (methodologies)

Work-product standards

Measurements

Training courses

Tool-to-Organization Interconnection Standard Profile

Figure 3. Tool-Organization Form (From Poston)

11

Tool name: Date:

Platform Interconnection Name of applicable standards

Hardware

Operating Systems

Database Systems

Language Systems

Communications Systems

User-interface Systems

Data-file-exchage formats

Document-exchange formats

Description-exchange formats

Tool-to-Platform Interconnection Standard Profile

Figure 4. Tool-Platform Form (From Poston)

12

Date:

Tool Interconnection Name of applicable standards

Mechanisms for transfers
Direct
File-based
Control repository
Communication system
Other

Processes of transfers
Send

Receive

Information descriptions
Syntax

Semantics

Information purpose
Control

Management
Quality
Configuration/change
Project management
Measurement (metrics)

Subject
Presentation
Perspective
Concept

Other

Tool-Interconnection Standard Profile

Tool name:

Figure 5. Tool Interconnection Standard Profile Form (From Poston)

13

the tool does not support the criterion in any way, a rating of zero is assigned. If a tool

only partially provides the needed support, a value between zero and one is assigned. For

example, if a tool only provides 25% of the desired productivity gain, a value of .25 is

placed in the productivity gain rate line. The rating is then multiplied by the weighting

given to the criterion, in order to provide the tool’s final score for that criterion. Each

tool’s scores are then tallied.

The tool with the greatest total score is likely the one that the evaluator should

recommend for use to the project managers, tool users and other personnel who have

input in the final decision about which tool to use. Meeting participants listen to the

evaluator’s scoring and make assessments about each tool. The group then decides on

which tool should be adopted.

5. Reevaluation

After the selected tool has been implemented, it is continually reevaluated. The

tool evaluator and project managers work together to compare actual tool performance to

what was expected and promised. If the tool fails to perform or meet expectation, then an

analysis is conducted to determine whether the shortcomings are inherent to the tool or

are problems that the supplier may resolve through product improvements, training, or

other means. The cost of corrections will need to be weighed against the expected return

as well as the cost of adopting another tool.

6. Summary

The tool selection process developed by the IEEE 1175 Working Group provides

a solid foundation upon which to build an organization’s tool selection procedures. The

forms provide an excellent starting point for ranking prospective tools, but an

organization should include other criteria it feels are important and remove those that are

perceived of lesser importance to the organization. We build upon this list of criteria and

identify separate sets of criteria for tools applied to procedural code and for those applied

to object-oriented code.

14

B. INSTITUTE FOR DEFENSE ANALYSES REPORTS

The Institute for Defense Analyses published An Examination of Selected

Software Testing Tools: 19923 with a follow up supplement a year later4. These reports

document the results of research conducted on testing tools. While the tools and

knowledge gathered may be dated, they were still useful in our research. They provide a

historical frame of reference for the recent advances in testing tools as well as identify a

large number of measurements that may be used in assessing testing tools. For each tool,

the report details different types of analysis conducted, the capabilities within those

analysis categories, operating environment requirements, tool-interaction features, along

with generic tool information such as price, graphical support, and the number of users.

The research was conducted to provide software developers with information

regarding how software testing tools may assist the development and support of software

to be used for the Strategic Defense Initiative (SDI). The major conclusions of the study

were that:

• Test management tools offered critical support for planning tests and

monitoring test progress.

• Problem reporting tools offered support for test management by providing

insight software products’ status and development progress.

• Available static analysis tools of the time were limited to facilitating

program understanding and assessing characteristics of software quality.

• Static analysis tools provided only minimal support for guiding dynamic

testing.

• Many needed dynamic analysis capabilities were not commonly available.

• Tools were available that offered considerable support for dynamic testing

to increase confidence in correct software operation.

3 Youngblut, C and Brykczynski B., An Examination of Selected Software Testing Tools: 1992,

December 1992.
4 Youngblut, C and Brykczynski B., An Examination of Selected Software Testing Tools: 1993

Supplement, October 1993.

15

• Most importantly, they determined that the wide range of capabilities of

the tools and the tools’ immaturity required careful analysis prior to

selection and adoption of a specific tool.

C. SOFTWARE TECHNOLOGY SUPPORT CENTER’S SOFTWARE TEST
TECHNOLOGIES REPORT

The Software Technology Support Center works with Air Force software

organizations to identify, evaluate and adopt technologies to improve product quality,

increase production efficiency, and hone cost and schedule prediction ability.5 Section

four of their report discusses several issues that should be addressed when evaluating

testing tools and provides a sample tool-scoring matrix. Current product critiques and

tool evaluation metrics and other information can be obtained by contacting them through

their website at http://www.stsc.hill.af.mil/SWTesting/.

5 Daich, Gregory T., etal, Software Test Technologies Report, August 1994, p. 1.

16

III. METHODOLOGY

A. TOOL SEARCH

The following is a brief summary of testing tools that we considered using in our

thesis research. These tools were selected based on whether or not they support C++ and

also whether or not they could be run on a Windows platform.

1. BoundsChecker

a. Summary

BoundsChecker is a Compuware Numega product that automatically

detects static, stack and heap memory errors and resource leaks. The product assists in

finding and fixing memory and resource leaks and API, pointer, and memory errors

automatically. BoundsChecker identifies the line of source code where errors occurred,

provides explanations, and provides suggested solutions and coding samples.

b. Features

• Detects memory and resource leaks

• Finds and fixes failed API calls in any application, component, DLL or

EXE

• Identifies static, stack and heap memory errors

• Identifies the exact line of code where an error occurs

• Verifies that your code will run properly on all Win32 platforms,

including Windows CE

• Works from within the Visual C++ Developer Studio environment

2. C-Cover

a. Summary

C-Cover is a full-featured code coverage analyzer for C/C++ running on

Microsoft and Unix systems offered by Bullseye Testing Technology. C-Cover finds

untested code and measures testing completeness. Test productivity is increased and time

is saved by identifying untested control structures.

b. Features

• Ability to include or exclude any portion of project code
17

• Automatic merging of multiple sessions

• Automatic merging of coverage for DLLs and shared libraries that are

used by multiple programs

• Backed by premier level technical support

• Five levels of detail: source directory, source file, C++ class, function, and

control structure

• Full support for both C++ and C including templates, exception handling,

inline functions, namespace

• Function coverage and condition/decision coverage measurement

• Graphical Coverage Browser for Windows

• Indexed HTML user documentation

• Many options for searching, filtering, and sorting report information

• Run-time source code included

• Sample programs and Visual Studio projects

• Simple floating license

• Support for DLLs, shared libraries, device drivers, ActiveX, DirectX,

COM, and time-critical applications

• Support for languages translated to C/C++, such as lex and yacc

• Support for multiple threads, processes, users

• Transparent operation

3. CTC++ (Test Coverage Analyzer for C/C++)

a. Summary

CTC++, a Testwell Oy product, is an instrumentation-based tool

supporting testing and tuning of programs written in C and C++ programming languages.

CTC++ measures test coverage and reports on the dynamic behavior of the program

under test.

b. Features

• Ease of use

• Independent instrumentation of source files

18
• Integrated to Microsoft Visual C++ Developer Studio

• Support for host-target and kernel code testing

• Usable with GUI testers

4. Cantata++

a. Summary

Cantata++ supports unit and integration testing of C++ software.

Cantata++ offers dynamic testing and test coverage analysis of C++ applications.

Cantata++ measures object-oriented coverage measures such as inheritance and

instantiations of templates. This tool offers minimal intrusion into the development and

testing process by not generating stubs. Cantata++ is a product of Quality Checked

Software.

b. Features

• Access to data within the implementation of the software under test

• Full control of the interface between the software under test and other

software

• Data value checking facilities

• Support for reuse of test case

• Test harness for developing structured, repeatable tests

• Testing of exceptions and templates

5. ObjectChecker/Object Coverage/ObjectDetail

a. Summary

These three tools are all products of ObjectSoftware Inc. ObjectChecker

helps automate the style of C++ code and compares C++ constructs with pre-defined

coding rules. ObjectCoverage helps automate and improve the effectiveness of software

testing by analyzing “selection” and “iteration” statements and generating a test

case/branch coverage report. ObjectDetail is a tool to locate early defects and build

software-oriented metrics for analysis of an application.

19

b. Features

• Allows the use of regular expressions to define rules for the style checker,

to suppress report generation for selected files and methods and selected

sections of code

• Can be invoked from within test scripts

• Generates violation reports in PostScript or regular text format

• Handles all C++ classes (templates and non-templates)

• No source code changes are required

• Works at the source level

6. Panorama C/C++

a. Summary

Panorama C/C++ is a product of ISA (International Software Automation

Inc.). Panorama C/C++ is a fully integrated software engineering environment that

supports both the development of a new system and the improvement of an existing

system. The environment supports software testing, quality assurance, maintenance, and

re-engineering.

b. Features

• Automated defect detection with capability to identify the location of the

source code segment/branch having a defect found

• Automated error simulation

• Improves test planning through complexity analysis, control flow analysis,

and control flow diagramming

• Detailed data analysis, including the analysis of global and static variables

to identify where they are defined, used, or assigned a value

• Logic-error checking through program-logic analysis and diagramming

• Program review and inspection

• Test case design through path analysis and automatic extraction of path-

execution conditions

20

• Incremental unit testing by assigning bottom-up unit-test orders without

using stubs

• Performance analysis and module/branch execution frequency analysis to

locate performance bottlenecks

7. TCAT C/C++

a. Summary

TCAT C/C++ detects weaknesses in code. Easily accessible point-and-

click coverage reports find the segments that need to be further tested. Digraphs and call-

trees can be viewed pictorially. TCAT C/C++ is offered by Software Research Inc.

b. Features

• Common user interface

• Support for C++ templates, in-line functions and exception handlers

• Support for Microsoft Foundation Classes

• Interfaces to handle large, multiple complex projects

• Automated product installation

• Point-and-click coverage reporting

• Fully integrated with Microsoft Visual C++

• GUI is fully integrated with some C++ compilers

B. TOOLS SELECTED FOR EVALUATION

1. LDRA TESTBED

a. Summary

LDRA Testbed is a source code analysis and test coverage measurement

tool. Testbed utilizes its own parsing engine, offering the user more flexibility for

tailoring the tool to meet requirements. As a complete package of modules integrated

into an automated, software testing toolset, LDRA Testbed enables attaining a greater

degree of software testing.

21

LDRA Testbed’s two main testing domains are Static and Dynamic

Analysis. Static Analysis analyzes the code, while Dynamic Analysis involves execution

with test data to detect defects at run time. LDRA Testbed analyzes the source code,

producing reports in textual and graphical form depicting both the quality and structure of

the code, and highlighting areas of concern.

LDRA Testbed supports the C, C++, ADA, Cobol, Coral66, Fortran,

Pascal, and Algol programming languages. It has been ported to the following operating

systems: MS Windows NT/2000/9x/Me, Digital Unix, HP-UX, AIX, SCO ODT, SGI

Irix, SunOS 4 (Solaris. 2.1), Solaris Sparc/Intel, VAX/VMS, OpenVMS, MVS, Unisys A

Series, and Unisys 2200 Series.

b. Static Analysis Features

Main Static Analysis is the kernel module of the LDRA Testbed

system. All software requiring LDRA Testbed analysis must first be processed by Main

Static Analysis.

Main Static Analysis produces the following:

• LCSAJ Report (see page 23 for a description of LCSAJ)

• Metrics Report

• Quality Report

• Reformatted Code

1.) Complexity Analysis: Complexity measures can be

computed for procedures, files and even across an entire system. Complexity Analysis

analyzes the subject code, reporting on its underlying structure on a procedure-by-

procedure basis.

2.) Metrics Report: Complexity metrics are reported in

the Metrics Report. This configurable report breaks down each metric on either a file-by-

file or a procedure-by-procedure basis and stipulates whether the value has passed the

quality model or not. At the top of the report is a list of the metrics that are computed.
22

Each metric is reported with those passing the quality model in green, and those failing in

red.

Complexity Metric Production: In order to control the quality of

software products, LDRA Testbed produces the following complexity metrics:

Control Flow Knots: Knot analysis measures the amount of

disjointedness in the code and hence the amount of ‘jumping about’ a code reader will be

required to undertake. Excessive knots may indicate that a program can be reordered to

improve its readability and complexity.

Cyclomatic Complexity: Cyclomatic Complexity reflects the

decision-making structure of the program. It is recommended that for any given module

the metric should not exceed ten. This value is an indicator of modules that may benefit

from redesign. It is a measure of the size of the directed graph, and hence is a factor in

complexity.

Reachability: All executable statements should be reachable by

following a control-flow path from the start of the program. Unreachable code consists

of statements for which there is no such path. LDRA Testbed marks all such lines as

being unreachable. Since they contribute nothing to the program computations, they

could be removed without altering the code’s current functionality.

Looping Depth: The maximum depth of the control flow loops is a

factor in the overall readability, complexity and efficiency of the code.

LCSAJ Density: The LCSAJ density is a maintainability metric.

If a line of code is to be changed, then the density informs the user how many test paths

(LCSAJs) will be affected by that change. If the density is high, then confidence that the

change is correct for all test paths will be reduced, and hence an increased amount of

regression testing may be required.

An LCSAJ is a linear sequence of executable code commencing

either from the start of the program or from a point to which control flow may jump. It is

23

terminated either by a specific control-flow jump or by the end of the program. The

linear code sequence consists of one or more consecutive Basic Blocks. Consequently,

there may be a number of predicates that must be satisfied in order for control flow to

execute the linear code sequence and terminating jump.

Comments: To control readability and maintainability, the

following are measured:

• Number of lines of comments in the declaration part of a procedure
• Number of lines of comments in the executable part of a procedure
• Number of lines of comments just prior to a procedure declaration (a

procedure header)
• Number of totally blank lines of comments

Halstead’s Metrics: These metrics measure the size of a program. LDRA Testbed

supports the following Halstead metrics:

• Length
• Total Operands
• Total Operators
• Unique Operands
• Unique Operators
• Vocabulary
• Volume

3.) Quality Report: The Quality Report creates views of

the quality of the source code. The report can reflect the quality of a single file, the entire

system or a group of unrelated source files, and can be produced in either ASCII or

HTML format.

c. Dynamic Analysis Features

After the source code has been instrumented, compiled, and linked, the

execution of the program creates an output stream which contains the execution history.

The Dynamic Coverage Analysis option processes the execution history, mapping its

information onto the control flow information on the source code acquired from the static

analysis phase. The instrumented program is normally executed several times, with each

24

execution followed by a Dynamic Coverage Analysis. The remaining options are usually

selected after completion of a series of these analyses.

The output of the Dynamic Coverage Analysis can be used as input for

making decisions about improving the robustness of the source code. In essence, the

dynamic-coverage metrics provide an indication of how much more needs to be done.

To increase the coverage, the user must construct further sets of test data

to be run with the instrumented source code. The Dynamic Coverage Analysis must then

be rerun. Each run of the Dynamic Coverage Analysis shows the names of the entire test

data sets used to obtain the corresponding results. The detailed results are reported as

profiles, including the following:

• Untested Code Reporting
• Control Flow Tracing
• Statement execution Frequency Analysis
• Branch Execution Frequency Analysis
• LCSAJ Sub-path Execution Analysis
• Profile Analysis
• Dynamic Data Set Analysis
• Host/Target Testing
• Real-Time Systems Testing

2. Parasoft Testing Products

a. Summary

This evaluation consisted of the following Parasoft Products: C++ Test

with embedded CodeWizard (beta version 1.3 August 2, 2001) and Insure++. C++ Test

is a C/C++ unit testing tool that automatically tests any C/C++ class, function, or

component without requiring the user to develop test cases, harnesses, or stubs. C++ Test

automatically performs white-box testing, black-box testing, and regression testing.

CodeWizard can enforce over 170 industry-accepted C/C++ coding

standards and permits the user to create custom rules that apply to a particular software-

development effort.

Insure++ automatically detects runtime errors in C/C++ programs.

25

Parasoft’s Testing Tool suite supports Microsoft Visual Studio 6.0 on

Windows NT/2000. Parasoft is developing Linux and Solaris versions at the time this

research was conducted.

b. C++ Test features

• Can be used to achieve and demonstrate various levels of code coverage

• Allows verification of class functionality and construction without waiting

for the rest of the system to build

• Automates unit testing process, which is fundamental to Extreme

Programming and other programming models

• Automatically builds scaffolding and stubs for classes/functions

• Automatically creates and executes test cases for classes/functions

• Performs automatic regression testing

• Performs component testing

• Provides a framework for entering and executing specification and

functionality tests

• Provides for incremental testing of classes/functions

• Tests code under extreme cases

c. CodeWizard features

• Coding standards grouped according to programming concepts and

severity

• Enforces predefined and custom rules

• Supports the creation of custom rules

• Supports user-specified thresholds for triggering rule-violation reports

• Supports rule suppression

26

d. Insure++ features

• Allows switching between selective checking and thorough checking with

full instrumentation

• Capable of checking third-party libraries, functions, and interfaces to

modules written in languages other than C

• Contains a large set of rules for detecting errors specific to C++ code

• Detects numerous categories of errors such as memory corruption,

memory leaks, memory allocation errors, variable initialization errors,

variable definition conflicts, pointer errors, library errors, logic errors, and

algorithmic errors

• Identifies the source and location of leaks

• Supports cross-platform development

• Supports large number of compilers

3. Telelogic Products

a. Summary

Logiscope TestChecker measures structural test coverage and shows

uncovered source code paths. Logiscope TestChecker is based on a source code

instrumentation technique that can be tailored to the test environment.

Logiscope TestChecker identifies which parts of the code remain untested.

It also identifies inefficient test cases and regression tests that should be re-executed

when a function or file is modified. Logiscope TestChecker is based on source code

instrumentation techniques such as the use of probes.

b. Features

• Assesses test case efficiency and testing progress

• Assists in the definition of regression tests

• Instrumentation code probes can be tuned to meet application-execution
constraints, for

• Deciding how to implement memory management coverage data
(e.g., statically or dynamically, type of data)

27

• Reducing overhead associated with the size of the instrumented
files

• Selecting the type of output device for dumping coverage data
(e.g., file, TCP/IP, serial link)

• Merges multiple test run results

• Provides code-coverage analysis

• Provides information for each function, file or project:

• Decision coverage

• Modified conditions/decisions (MC/DC) as per DO-178B

• List of tests that cover the selected function or file

• Provides information for each test case:

• Specific test case improvement regarding overall overage

• List of impacted files and functions

• Description field for user comments

• Supports multi-threaded applications

• Tests can be performed either on host or target platforms

• Computes the following metrics:

• Call-pair coverage

• Instruction-blocks coverage

• Automatically generates customizable reports and documentation

• Provides a visual representation of the uncovered paths (i.e., call and

control-flow graphs)

C. SOFTWARE QUALITY METRICS

Extensive research and numerous writings have been completed in relation to

metrics for measuring quality of software programs. The history of software metrics

began with counting the number of lines of code (LOC). It was assumed that more lines

of code implied more complex programs, that in turn were more likely to have errors.

28

However, software metrics have evolved well beyond the simple measures introduced in

the 1960s.

1. Procedural (Traditional) Software Metrics

Metrics for traditional or procedural source code have increased in number and

complexity since the first introduction of lines of code. While LOC is still used, it is

rarely measured simply to know the length of procedural programs since there continues

to be debate on the correlation between size and complexity. Instead, LOC is used in the

computation of other metrics, most notably, in determining the average number of defects

per thousand lines of code.

McCabe6 first applied cyclomatic complexity to computer software. Cyclomatic

complexity is an estimate of the reliability, testability, and maintainability of a program,

based on measuring the number of linearly independent paths through the program.

Cyclomatic complexity is measured by creating a control graph representing the entry

points, exit points, decision points, and possible branches of the program being analyzed.

The complexity is then determined using the following formula:

Equation 3.1

M = V(G) = e – n + 2p where V(G) is the cyclomatic number of G

 e is the number of edges

 n is the number of nodes

 p is the number of unconnected parts of G

This metric however does not look at the specific implementation of the graph. For

example, nested if-then-else statements are treated the same as a case statement even

though their complexities are not the same.

 Function point (FP)7 is a metric that may be applied independent of a specific

programming language, in fact, it can be determined in the design stage prior to the

commencement of writing the program. To determine FP, an Unadjusted Function Point

6 McCabe, “Complexity Measure,” IEEE Transactions on Software Engineering, Vol. 2, No. 4, pp.
308-320, December 1976.

29

7 Dekkers, C., "Demystifying Function Points: Let's Understand Some Terminology," IT Metrics
Strategies, October 1998.

Count (UFC) is calculated. UFC is found by counting the number of external inputs (user

input), external outputs (program output), external inquiries (interactive inputs requiring a

response), external files (inter-system interface), and internal files (system logical master

files). Each member of the above five groups is analyzed as having either simple,

average or complex complexity, and a weight is associated with that member based upon

a table of FP complexity weights. UFC is then calculated via:

 Equation 3.2

UFC = Σ1->15 (number of items of variety i) x (weight of i)

Next, a Technical Complexity Factor (TCF) is determined by analyzing fourteen

contributing factors. Each factor is assigned a score from zero to five based on its

criticality to the system being built. The TCF is then found through the equation:

Equation 3.3

TCF = 0.65 + 0.01Σ1->14 Fi

FP is the product of UFC and TCF. FP has been criticized due to its reliance upon

subjective ratings and its foundation on early design characteristics that are likely to

change as the development process progresses.

 Halstead8 created a metric founded on the number of operators and operands in a

program. His software-science metric (also referred to as ‘halted length’) is based on the

enumeration of distinct operators and operands as well as the total number of appearances

of operators and operands. With these counts, a system of equations is used to assign

values to program level (i.e., program complexity), program difficulty, potential

minimum volume of an algorithm, and other measurements.

8 Halstead, M., Elements of Software Science, Elsevier, North-Holland, New York, 1977.

30

2. Object-Oriented Software Metrics

The most commonly cited object-oriented software metrics are those proposed by

Chidamber and Kemmerer.9 Their suite consists of the following metrics: weighted

methods per class, depth of inheritance tree, number of children, coupling between object

classes, response for a class, and lack of cohesion in methods.

Weighted methods per class (WMC) is the sum of the individual complexities of

the methods within that class. The number of methods and the sum of their complexities

correlate to the level of investment of time and effort in designing, developing, testing,

and maintaining the class. Additionally, a large number of methods implies increased

complexity due to the increased likelihood of their use by children of the class.

Depth of inheritance tree (DIT) is defined as the maximum length from the node

to the root of a class tree. The deeper a class is in the inheritance hierarchy, the greater

the likelihood that it inherits a large number of methods, thereby making its behavior

more complex to both predict and analyze. Also, a larger DIT implies greater design

complexity due to the larger number of classes and methods in the project.

The number of immediate subclasses of class is represented by “number of

children” (NOC). A larger NOC implies a significant amount of inheritance and reuse.

The more times a class is inherited, the greater the possibility that errors will be made in

its abstraction and the greater the possible impact the class has on the project. Therefore,

a class with a high NOC may need to be tested more thoroughly than classes with lower

NOC’s.

Coupling between object classes (CBO) is defined as the number of classes to

which it is coupled (i.e., interdependent on). When a class inherits methods, instance

variables, or other characteristics from another class, they are coupled. The greater the

number of shared attributes, the greater the interdependence. A significant amount of

coupling leads to an increased probability of changes in one class causing unaccounted,

and possibly undesired, changes in the behavior of the other. This tighter coupling may

require more extensive testing of classes that are tightly coupled together.

9 Chidamber, S. and Kemmerer, C., ‘A Metrics Suite for Object Oriented Design’, IEEE Transactions

on Software Engineering, Vol. 20, No. 6, pp. 476-493, 1994.

31

Response for a class (RFC) is defined as the cardinality of the set whose members

are the methods of the class that can potentially be called in response to a message

received by an object in that class. The set’s members include the class methods called

by other methods within the class being analyzed. A large RFC indicates that there are

numerous ways in which class methods are called, possibly from many different classes.

This may lead to difficulties in understanding the class, making analysis, testing, and

maintenance of the class uncertain.

Lack of cohesion in methods (LCOM) is defined as the number of method pairs

with no shared instance variables minus the number of method pairs with common

attributes. If the difference is negative, LCOM is set equal to zero. A large LCOM value

indicates strong cohesion within the class. A lack of cohesion, indicated by a low LCOM

value, signifies that the class represents two or more concepts. The complexity of the

class, and perhaps of the entire project, could be reduced by separating the class into

smaller, and likely simpler, classes.

Chidamber and Kemmerer’s suite were extended by Lie and Henry.10 They

introduced the Message Passing Coupling (MPC) metric that counts the number of send

statements defined in a class; this signifies the complexity of message passing between

classes. Their Data Abstraction Coupling (DAC) metrics is calculated based on the

number of abstract data types used in the class and defined in another class. The greater

the DAC value, the greater the dependence on other classes and therefore the greater the

complexity of the project.

Henry and Kafura developed the Information Flow Complexity (IFC) metric to

measure the total level of information flow of a module.11 A module’s (M) fan-in is

defined as the number of local flows that terminate at M plus the number of data

structures from which information is retrieved by M. Fan-out is defined as the number of

local flows that emanate from M plus the number of data structures that are updated by

M. Local flow is defined as either a module invoking a second module and passing

10 Lie, W. and Henry, S., “Object-oriented Metrics that Predict Maintainability”, Journal of Systems
and Software, Vol. 23, No. 2, pp. 111-122.

11 Henry, S. and Kafura, D., "Software Structure Metrics based on Information Flow," IEEE
Transactions on Software Engineering, SE Vol. 7 No. 5, September 1981.

32

information to it or a module being invoked returning a result to the calling module. IFC

is then found by summing the LOC of M and the square of the product of M’s fan-in and

fan-out. Shepperd removed LOC to achieve a metric more directly related to information

flow.12

Equation 3.4

IFC(M) =LOC(M) + [fan-in(M) x fan-out(M)]2

Lorenz and Kidd proposed another set of object-oriented software quality

metrics.13 Their suite includes the following:

• Number of scenarios scripts (use cases) (NSS)

• Number of key classes (NKC)

• Number of support classes

• Average number of support classes per key class (ANSC)

• Number of subsystems (NSUB)

• Class size (CS)

• Total number of operations + number of attributes

• Both include inherited features

• Number of operations overridden by subclass (NOO)

• Number of operations added by a subclass (NOA)

• Specialization index (SI)

• SI = [NOO x level] / [Total class method]

• Average method size

• Average number of methods

• Average number of instance variables

• Class hierarchy nesting level

12 Churcher, N and Shepperd, M, “Comments on ‘A Metrics Suite for Object Oriented Design’”, IEEE

Transactions on Software Engineering, Vol. 21 No. 3, pp. 263-265, 1995.
13 Lorenz, M. and Kidd, J., Object-Oriented Software Metrics, Prentice Hall, Englewood Cliffs, N.J.,

1994.

33

D. PROPOSED SOFTWARE TESTING TOOL METRICS

Elaine Weyuker identified nine properties that complexity measures should

possess.14 Several of these properties can be applied to other metrics as well. These

characteristics were considered during our research to develop metrics for software

testing tools.

We propose that our software testing tool metric suite contain the following

properties, although to varying degrees. The metrics exhibit non-coarseness in that they

provide different values when applied to different testing tools. They are finite in that

there are a finite number of tools for which the metrics’ results in an equal value. Yet

they are non-unique in that the metric may provide the same value when applied to

different tools. Our metrics are designed to have an objective means of assessment rather

than being based on subjective opinions of the evaluator. A testing tool metric record

sheet is included in Appendix E.

1. Metrics for Tools Testing Procedural Software

These metrics are applied to the testing tool in its entirety vice a specific function

performed by the tool.

a. Human Interface Design (HID)

All automated testing tools require the tester to set configurations prior to

the commencement of testing. Tools with well designed human interfaces enable easy,

efficient, and accurate setting of tool configuration. Factors that lead to difficult,

inefficient, and inaccurate human input include multiple switching between keyboard and

mouse input, requiring large amount of keyboard input overall, and individual input fields

that require long strings of input. HID also accounts for easy recognition of the

functionality of provided shortcut buttons.

14.Weyuker, E., ‘Evaluating Software Complexity Measures’, IEEE Transactions on Software

Engineering, Vol. 14, No. 9, pp. 1357-1365, 1988.

34

Equation 3.5

HID = KMS + IFPF + ALIF + (100 –BR)

Where KMS is the average number of keyboard to mouse switches per function

 IFPF is the average number of input fields per function

 ALIF is the average string length of input fields

BR is the percentage of buttons whose functions were identified via inspection by

first time users times ten

A large HID indicates the level of difficulty to learn the tool’s procedures on

purchase and the likelihood of errors in using the tool over a long period of time. HID

can be reduced by designing input functions to take advantage of current configurations

as well as using input to recent fields as default in applicable follow on input fields. For

example, if a tool requires several directories to be identified, subsequent directory path

input fields could be automatically completed with previously used paths. This would

require the tester to only modify the final subfolder as required vice reentering lengthy

directory paths multiple times.

b. Maturity & Customer Base (MCB)

There are several providers of automated testing tools vying for the

business of software testers. These providers have a wide range of experience in

developing software testing tools. Tools that have achieved considerable maturity

typically do so as a result of customer satisfaction in the tool’s ability to adequately test

their software. This satisfaction leads to referrals to other users of testing tools and an

increase in the tool’s customer base.

Equation 3.6

MCB = maturity + customer base + projects

 Where maturity is the number of years tool (and its previous versions)

35
have been applied in real world applications

 customer base is the number of customers who have more than one

year of experience applying the tool

projects is the number of previous projects of similar size that
used the tool

Care must be taken in evaluating maturity to ensure the tool’s current

version does not depart too far from the vendor’s previous successful path. Customer

base and projects are difficult to evaluate without relying upon information from a vendor

who has a vested interest in the outcome of the measurement.

c. Tool Management (TM)

As software projects become larger and more complex, large teams are

used to design, encode, and test the software. Automated testing tools should provide for

several users to access the information while ensuring proper management of the

information. Possible methods may include automated generation of reports to inform

other testers on outcome of current tests, and different levels of access (e.g., read results,

add test cases, modify/remove test cases).

Equation 3.7

TM = access levels + information control methods

Where access levels is the number of different access levels to tool information

 Information control methods is the sum of the different methods of

controlling tool and test information

d. Ease of Use (EU)

A testing tool must be easy to use to ensure timely, adequate, and

continual integration into the software development process. Ease of use accounts for the

learning time of first-time users, retainability of procedural knowledge for frequent and

casual users, and operational time of frequent and casual users.

36

Equation 3.8

EU = LTFU + RFU + RCU + OTFU + OFCU

Where LTFU is the learning time for first users

 RFU is the retainability of procedure knowledge for frequent users

 RCU is the retainability of procedure knowledge for casual users

 OTFU is the average operational time for frequent users

 OTCU is the average operational time for casual users

e. User Control (UC)

Automated testing tools that provide users expansive control over tool

operations enable testers to effectively and efficiently test those portions of the program

that are considered to have a higher level of criticality, have insufficient coverage, or

meet other criteria determined by the tester. UC is defined as the summation of the

different portions and combinations of portions that can be tested. A tool that tests only

an entire executable program would receive a low UC value. Tools that permit the tester

to identify which portions of the executable will be evaluated by tester-specified test

scenarios would earn a higher UC value. Tools that will be implemented by testing teams

conducting a significant amount of regression testing should have a high UC value to

avoid retesting of unchanged portions of code.

f. Test Case Generation (TCG)

The ability to automatically generate and readily modify test cases is

desirable. Testing tools which can automatically generate test cases based on parsing the

software under test are much more desirable that tools that require testers to generate

their own test cases or provide significant input for tool generation of test cases.

Availability of functions to create new test cases based on modification to automatically

generated test cases greatly increases the tester’s ability to observe program behavior

under different operating conditions.

 Equation 3.9

37

TCG = ATG + TRF

Where ATG is the level of automated test case generation as defined by:

 10: fully automated generation of test cases

 8: tester provides tool with parameter names & types

 via user friendly methods (i.e. pull down menus)

 6: tester provides tool with parameter names & types

4: tester must provide tool with parameter names, types

and range of values via user friendly methods

2: tester must provide tool with parameter names, types

 and range of values

0: tester must generate test cases by hand

TRF is the level of test case reuse functionality

10: test cases may be modified by user friendly methods

 (i.e. pull down menus on each test case parameter)

and saved as a new test case

8: test cases may be modified and saved as a new test case

6: test cases may be modified by user friendly methods

 but cannot be saved as new test cases

4: test cases may be modified but cannot be saved as new test cases

0: test cases cannot be modified

38

g. Tool Support (TS)

The level of tool support is important to ensure efficient implementation

of the testing tool, but it is difficult to objectively measure. Technical support should be

available to testers at all times testing is being conducted, including outside traditional

weekday working hours. This is especially important for the extensive amount of testing

frequently conducted just prior to product release. Technical support includes help desks

available telephonically or via email, and on-line users’ groups monitored by vendor

technical support staff. Additionally, the availability of tool documentation that is well

organized, indexed, and searchable is of great benefit to users.

Equation 3.10

TS = ART + ARTAH + ATSD – DI

Where ART is the average response time during scheduled testing schedule

ARTAH is the average response time outside scheduled testing schedule

ATSD is the average time to search documentation for desired information

DI is the documentation inadequacy measured as the number of

unsuccessful searches of documentation

h. Estimated Return on Investment (EROI)

A study conducted by the Quality Assurance Institute involving 1,750 test

cases and 700 errors has shown that automated testing can reduce time requirements for

nearly every testing stage and reduces overall testing time by approximately 75%.15

Vendors may also be able to provide similar statistics for their customers currently using

their tools.

Equation 3.11

EROI = (EPG x ETT x ACTH) + EII – ETIC + (EQC x EHCS x ACCS)

15 QA Quest, The New Quality Assurance Institute, November 1995.

39

 Where:

EPG is the Estimated Productivity Gain
ETT is the Estimated Testing Time without tool
ACTH is the Average Cost of One Testing Hour
EII is the Estimated Income Increase
ETIC is the Estimated Tool Implementation Cost
EQC is the Estimated Quality Gain
EHCS is the Estimated Hours of Customer Support per Project
ACCS is the Average Cost of One Hour of Customer Support

i. Reliability (Rel)

Tool reliability is defined as the average mean time between failures.

j. Maximum Number of Classes (MNC)

Maximum number of classes that may be included in a tool’s testing

project.

k. Maximum Number of Parameters (MNP)

Maximum number of parameters that may be included in a tool’s testing

project.

l. Response Time (RT)

Time required to conduct test case on specified size of software. Difficult

to measure due to varying complexity of different programs of same size.

m. Features Support (FS)

Count of the following features:

• Extendable: tester can write functions that expand provided functions

• Database available: open database for use by testers

• Integrates with software development tools

• Provides summary reports of findings

2. Metrics for Tools Used to Test Object-Oriented Software

Studies are continuously being conducted to ascertain the validity and usefulness

of other software quality metrics. A seminal study, conducted at the University of

Maryland, determined that the majority of the metrics proposed by Chidamber and
40

Kemmerer were useful in predicting the program under test’s proneness to containing

faults.16 As such, automated testing tools implemented on object-oriented software

should support their metric suite with the exception of LCOM. Testing tool support of

the other object-oriented software quality metrics discussed previously should also be

measured. This will enable the software development manager to measure the level of

support for measuring the quality of object-oriented software.

3. Difference between Procedural Testing Tool Metrics and Object-
oriented Testing Tool Metrics

Through our studies, we have determined that the differences between procedural

and object-oriented testing tool metrics are minimal. Metrics for testing tools aimed at

object-oriented software should support the general testing tool metrics. Additionally,

they should include a measurement for level of support of the object-oriented software

quality metrics and one for the maximum number of classes supported by the tool.

E. PERFORM TESTS

1. LDRA Testbed

a. Set-up

LDRA Testbed was installed on a computer using Microsoft Windows 98.

Projects tested were written, compiled, and executed in Microsoft Visual Studio 6.0.

LDRA Testbed does not embed itself into the Visual Studio application, but does provide

an icon on the desktop for easy launching of the testing tool.

b. Problems During Execution

The tool performed well once a few configuration difficulties were

corrected. The installation wizard did not automatically update settings for the location

of the vcvars32.bat file. In response to queries, LDRA’s technical support was timely,

friendly, and knowledgeable.

16 Basili, V., etal, “A Validation of Object-Oriented Design Metrics as Quality Indicators”, Technical

Report 95-40, University of Maryland, College Park, MD, April 1995.

41

2. Parasoft

a. Set-up

The following Parasoft products were installed on a computer using

Microsoft Windows 2000; C++ Test, Code Wizard, and Insure++. Projects tested were

written, compiled, and executed in Microsoft Visual Studio 6.0. All three products allow

themselves to be integrated into the Visual Studio application. Testing operations can be

conducted from either buttons added to Visual Studio toolbars or via the Tools menu on

the Visual Studio menu bar.

Configuring CodeWizard: In order to use CodeWizard, you must have

CodeWizard (with a valid CodeWizard license) installed on your machine.

To configure C++ Test to automatically run your classes and methods

through CodeWizard, enable the Use CodeWizard option by choosing Options> Project

Settings, then selecting the Use CodeWizard option in the Build Options tab.

b. Problems During Execution

Parasoft C++ Test was initially installed on a computer using Microsoft

Windows 98, as had been done during earlier testing. During test execution, C++ Test

consistently produced time-out errors. After speaking with technical support to identify

the source of the difficulties, it was discovered that version 1.3 (June 2001) of C++ Test

did not support Windows 98. After obtaining version 1.3 (July 2001) of C++ Test, it and

Code Wizard and Insure++ were installed on a computer using Windows 2000. As

Parasoft technical support was discussing the many features available in their products, it

was determined that there was a newer version [beta version 1.3 (August 2, 2001)]

available. This new version incorporates the code analysis features of Code Wizard into

C++ Test.

42

3. Telelogic

a. Set-up

The Telelogic Tau Logiscope 5.0 testing tool suite was installed on a

computer using Microsoft Windows 2000. Projects tested were written, compiled, and

executed in Microsoft Visual Studio 6.0. Telelogic provides access to its functions by

placing selection into the Tools menu on the Visual Studio menu bar, but does not

automatically introduce graphical shortcut buttons on the Visual Studio toolbar.

b. Problems During Execution

While the example in the installation manual worked well, it did not

address all the functions that are not performed by the wizard (e.g. creation of batch

files). Several of the problems that we encountered could be eliminated by better

organization of installation manuals, such as placing the Microsoft Visual Studio

integration content at the beginning of the manual. Once integrated into Visual Studio,

the tools were quite easy to use.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

IV. ANALYSIS

A. TOOL PERFORMANCE

1. LDRA Testbed

a. Procedural

Coverage Report – In order to achieve DO178B Level A, the program

must achieve 100% coverage in both statement coverage and branch coverage. The

procedural program achieved an overall grade of fail because it only achieved 88%

statement coverage and 83% branch coverage. 554 of a possible 629 statements were

covered during the testing process. 146 out of 176 branches were covered by the testing

tool. What is important to note about 88% coverage is that we only used default test

settings and did not conduct additional test runs to improve our coverage. As mentioned

before in the tool summary, to increase the coverage, the user must construct further sets

of test data to be run with the instrumented source code. The report lists each individual

line that is not executed by any testing data. The graphics below were captured directly

from Testbed’s report.

Overall Result (For File):
Coverage Metrics required to achieve

D0178B Level A NOT Attained

Statement = 88 % Branch/Decision = 83 % MC/DC : Not Applicable
Figure 5: Procedural Dynamic Coverage Analysis Overall Report

45

 Executed by Runs… Coverage(%)

Procedure Executable

Statements

Previous Current Combined Previous Current Combined

Main 629 0 554 554 0 88 88

Whole

program

629 0 554 554 0 88 88

Figure 6: Procedural Statement Execution History Summary

 Executed by Runs… Coverage(%)

Procedure Branch/

Decisions

Previous Current Combined Previous Current Combined

Main 176 0 146 146 0 83 83

Whole

Program

176 0 146 146 0 83 83

Figure 7: Procedural Branch/Decision Execution History Summary

Metrics Report – Our procedural program returned a value of 130 knots

and a cyclomatic complexity of sixty-one. The 130 knots signals that the procedural code

is disjointed and would require somebody trying to read the code to jump back and forth

between functions in order to understand what the code is attempting to accomplish. The

cyclomatic complexity of sixty-one demonstrates that the program can be re-ordered to

improve readability and reduce complexity. The figures below list the findings from the

metrics report for Halstead Metrics, LCSAJ and Unreachability.

46

File Total

Operators

Total

Operands

Unique

Operators

Unique

Operands

Vocabulary Length Volume

Seqmain.cpp 471 593 24 60 84 1064 6801

Figure 8: Halstead Metrics for procedural code

File Total

LCSAJs

Reachable

LCSAJs

Unreachable

LCSAJs

Max.

LCSAJ

Density

Unreachable

Lines

Unreachable

Branches

Seqmain.cpp 228 218 10 25 0 0

Figure 9: LCSAJ and Unreachability for procedural code

Quality Report – The Quality Report gives an instant view on the quality

of the source code analyzed. Overall LDRA’s Testbed gave the procedural program a

grade of fail. It reported 109 occurrences of eighteen different violations classified as

“Mandatory (Required) Standards,” eleven occurrences of three different violations

classified as “Checking (Mandatory/Required) Standards,” and eighty occurrences of six

different violations against standards considered “Optional (Advisory).” Figures 10

through Figure 13 list the different standards that were violated. If a Motor Industry

Software Reliability Association (MISRA) code is violated, it is so annotated by the

LDRA report.

47

Number of
Violations (M) Mandatory (Required) Standards MISRA Code

1 More than 500 executable reformatted lines in file
1 Procedure exceeds 50 reformatted lines.
5 No brackets to loop body (added by Testbed). MISRA 59
16 No brackets to then/else (added by Testbed). MISRA 59
2 Use of break statement in loop.
2 Use of continue statement.
1 Cyclomatic complexity greater than 10.
1 Variables declared but not used in code analyzed.
1 UR data flow anomalies found. MISRA 30
1 No default case in switch statement.
21 Equality comparison of floating point. MISRA 50
2 Boolean comparison with 0 preferred.
1 Main must be int (void) or int (int,char*[]).
4 Use of abort, exit, etc. MISRA 126
36 Floating point not permitted.
1 LCSAJ density exceeds 20.
12 Use of a comment in a macro definition.
1 Less than 0.10 comments per line of code

Figure 10: Procedural Mandatory Standards Violations

Number of
Violations

Annotation
Code

(C)Checking
(Mandatory/Required)
Standards

MISRA
Code

1 26 S Infinite loop used.

9 29 S Use of += or -= operators
found.

1 7 C Procedure has more than one
exit point.

Figure 11: Procedural Checking Standards Violations
48

Number of
Violations

(O)Optional(Advisory)
Standards

MISRA
Code

1 Procedure contains essential
knots.

1 Procedure is not structured.
1 DU data flow anomalies found.
1 DD data flow anomalies found.

17 Loop index is not declared
locally.

59 Scope of variable could be
reduced MISRA 22

Figure 12: Procedural Optional Standards Violations

Number of procedures: 1
Number of locally uncalled procedures: 0
Maximum loop depth: 5
Total Cyclomatic Complexity: 61
Number of reformatted executable lines: 642
Number of lines of comments: 29

Figure 13: Procedural Global Basic Information

b. Functional

Coverage Report – The functional program achieved an overall grade of

fail because it only achieved 90% statement coverage and 86% branch coverage. 557 of

a possible 619 statements were covered during the testing process. 169 out of 196

branches were covered by the testing tool. Again, in achieving 88% coverage, we only

used default test settings and did not conduct additional test runs to improve our

coverage. The graphics below were captured directly from Testbed’s report.

49

Overall Result (For File):
Coverage Metrics required to achieve

D0178B Level A NOT Attained

Statement = 90 % Branch/Decision = 86 % MC/DC : Not Applicable
Figure 14: Functional Dynamic Coverage Analysis Overall Report

 Executed by Runs… Coverage(%)

Procedure Executable

Statements

Previous Current Combined Previous Current Combined

Main 189 0 184 184 0 97 97

Pick_event 34 0 34 34 0 100 100

Arrival_event 76 0 63 63 0 83 83

Find_backoff_time 13 0 13 13 0 100 100

Resched_attempt 33 0 17 17 0 52 52

Attempt_event 105 0 80 80 0 76 76

Transmit_event 76 0 76 76 0 100 100

Departure_event 44 0 41 41 0 93 93

Calculate_results 37 0 37 37 0 100 100

Show_results 12 0 12 12 0 100 100

Whole program 619 0 557 557 0 90 90

Figure 15: Functional Statement Execution History Summary

50

 Executed by Runs… Coverage (%)

Procedure Branch/

Decisions

Previous Current Combined Previous Current Combined

Main 72 0 67 67 0 93 93

Pick_event 11 0 11 11 0 100 100

Arrival_

event

27 0 16 16 0 59 59

Find_backoff

_time

5 0 5 5 0 100 100

Resched_atte

mpt

10 0 6 6 0 60 60

Attempt_even

t

31 0 25 25 0 81 81

Transmit_eve

nt

24 0 24 24 0 100 100

Departure_ev

ent

10 0 9 9 9 90 90

Calculate_res

ults

5 0 5 5 0 100 100

Show_results 1 0 1 1 0 100 100

Whole

Program

196 0 169 169 0 86 86

Figure 16: Functional Branch/Decision Execution History Summary

51

Metrics Report – Our functional program returned a value of 109 knots

and a cyclomatic complexity of fifty-five. The 109 knots signals that the functional code

is disjoint and would require somebody trying to read the code to jump back and forth

between functions in order to understand what the code does. The cyclomatic complexity

of fifty-five demonstrates that the program can be re-ordered to improve readability and

reduce complexity. The figures below list the findings from the metrics report for

Halstead Metrics, LCSAJ and Unreachability.

File Total

Operators

Total

Operands

Unique

Operators

Unique

Operands

Vocabulary Length Volume

Csma.cpp 432 546 24 55 79 978 6165

Figure 17: Halstead Metrics for functional code

File Total

LCSAJs

Reachable

LCSAJs

Unreachable

LCSAJs

Max.

LCSAJ

Density

Unreachable

Lines

Unreachable

Branches

Csma.cpp 237 227 10 10 0 0

Figure 18: LCSAJ and Unreachability for functional code

Quality Report – The Quality Report provides a view of the quality of the

source code. Overall LDRA’s Testbed gave the functional program a grade of fail. It

reported 115 occurrences of eighteen different violations classified as “Mandatory

(Required) Standards,” fourteen occurrences of four different violations classified as

“Checking (Mandatory/Required) Standards,” and thirty-six occurrences of six different

violations against standards considered “Optional (Advisory).”

52

Number of
Violations (M) Mandatory (Required) Standards MISRA Code

1 More than 500 executable reformatted lines in file
5 Procedure exceeds 50 reformatted lines.
4 No brackets to loop body (added by Testbed). MISRA 59
11 No brackets to then/else (added by Testbed). MISRA 59
2 Use of break statement in loop.
2 Use of continue statement.
2 Cyclomatic complexity greater than 10.
1 UR data flow anomalies found. MISRA 30
1 No default case in switch statement.
18 Equality comparison of floating point. MISRA 50
9 Empty parameter list to procedure/function
9 Procedure definition has no associated prototype
2 Boolean comparison with 0 preferred.
1 Main must be int (void) or int (int,char*[]).
4 Use of abort, exit, etc. MISRA 126
30 Floating point not permitted.
12 Use of a comment in a macro definition.
1 Less than 5 comments in procedure header

Figure 19: Functional Mandatory Standards Violations

Number of
Violations

Annotation
Code

(C)Checking
(Mandatory/Required)
Standards

MISRA
Code

1 26 S Infinite loop used.

9 29 S Use of += or -= operators
found.

2 7 C Procedure has more than one
exit point.

2 18D Identifier name reused MISRA
12

Figure 20: Functional Checking Standards Violations

53

Number of
Violations

(O)Optional(Advisory)
Standards

MISRA
Code

2 Procedure contains essential
knots.

2 Procedure is not structured.
1 DU data flow anomalies found.
4 DD data flow anomalies found.
9 Globals used inside procedure

18 Scope of variable could be
reduced MISRA 22

Figure 21: Functional Optional Standards Violations

Number of procedures: 10
Number of locally uncalled procedures: 0
Maximum loop depth: 4
Total Cyclomatic Complexity: 55
Number of reformatted executable lines: 629
Number of lines of comments: 277

Figure 22: Functional Global Basic Information

c. Object-Oriented

Coverage Report – Technical difficulties prevented of coverage data for

the object-oriented program.

Metrics Report – The object-oriented program returned a value of fifty-

six knots and a cyclomatic complexity of forty-seven. The fifty-six knots indicates that

the object-oriented code is disjoint and would require somebody trying to read the code to

jump back and forth between functions in order to understand what the code is attempting

to accomplish. The cyclomatic complexity of forty-seven indicates that the program can

be re-ordered to improve readability and reduce complexity. The figures below list the

findings from the metrics report for Halstead Metrics, LCSAJ and Unreachability.

54

File Total

Operators

Total

Operands

Unique

Operators

Unique

Operands

Vocabulary Length Volume

Simulation.cpp 363 734 25 122 147 1097 7898

Figure 23: Halstead Metrics for object-oriented code

File Total

LCSAJs

Reachable

LCSAJs

Unreachable

LCSAJs

Max. LCSAJ

Density

Unreachable

Lines

Unreachable

Branches

Simulation.cpp 188 183 5 25 0 0

Figure 24: Object-Oriented LCSAJ and Unreachability for procedural code

Quality Report – The Quality Report gives an instant view on the quality

of the source code analyzed. Overall LDRA’s Testbed gave the object-oriented program

a grade of fail. It reported 401 occurrences of thirty-one different violations classified as

“Mandatory (Required) Standards,” 102 occurrences of nine different violations

classified as “Checking (Mandatory/Required) Standards,” and seventy-five occurrences

of nine different violations against standards considered “Optional (Advisory).”

d. Reporting Characteristics

LDRA’s Testbed has numerous report formats to support many different

decision processes. The static call-graph displays the connections between methods with

each method shown in a color that signifies the status of that method’s testing.

55

Number of
Violations (M) Mandatory (Required) Standards MISRA Code

1 More than 500 executable reformatted lines in file
8 Procedure exceeds 50 reformatted lines.
4 No brackets to loop body (added by Testbed). MISRA 59

22 No brackets to then/else (added by Testbed). MISRA 59
2 Use of break statement in loop.
2 Use of continue statement.
2 Cyclomatic complexity greater than 10.
1 Function does not return a value on all paths.
1 Variables declared but not used in code analyzed.
1 UR data flow anomalies found. MISRA 30
3 Parameters do not match expected actions.

3 Attempt to change parameter passed by value.
1 Function has no return statement.
1 No default case in switch statement.
7 Equality comparison of floating point. MISRA 50

21 Empty parameter list to procedure/function.

2 Macro contains unacceptable items MISRA 90 DERA 157
9 Procedure definition has no associated prototype MISRA 71
6 Expression is not Boolean. MISRA 35,36,49
2 Boolean comparison with 0 preferred.
1 Main must be int (void) or int (int,char*[]).
6 Use of abort, exit, etc. MISRA 126
1 Array has no bounds specified.

23 Parameter has same name as global variable. MISRA 21 DERA 128
4 Name reused in inner scope. MISRA 21 DERA 128

4 Prototype and Definition name mismatch. MISRA 74

162 Floating point not permitted.
2 No return type for function/procedure MISRA 75
1 LCSAJ density exceeds 20.

24 Use of a comment in a macro definition.
4 Nested header files found.

40 Less than 5 comments in procedure header
30 Less than 0.10 comments per line of code

Figure 25: Object-Oriented Mandatory Standards Violations

56

Number of
Violations

Annotation
Code

(C) Checking
(Mandatory/Required)
Standards

MISRA
Code

1 23S Procedure is not called in text
analyzed.

1 26 S Infinite loop used.

9 29 S Use of += or -= operators
found.

7 1D Unused procedure parameter.

11 9D Defined parameter has
possible clear path.

9 7 C Procedure has more than one
exit point.

20 18D Identifier name reused MISRA
12

33 19D Procedure called before being
defined.

MISRA
20,71

11 23D Function has parameter side
effects

MISRA
33,46

Figure 26: Object-Oriented Checking Standards Violations

Number of
Violations (O)Optional(Advisory) Standards MISRA

Code
1 Procedure contains essential knots.
1 Procedure is not structured.
6 DU data flow anomalies found.
11 DD data flow anomalies found.
13 Globals used inside procedure.

7 Referenced parameter has possible
clear path.

2 Loop index is not declared locally.

15 Name declared in another namespace
(MR). MISRA 12

19 Scope of variable could be reduced MISRA 22
Figure 27: Object-Oriented Optional Standards Violations

57

Number of procedures: 49
Number of locally uncalled procedures: 1
Maximum loop depth: 3
Total Cyclomatic Complexity: 83
Number of reformatted executable
lines: 968

Number of lines of comments: 1017
Figure 28: Object-Oriented Global Basic Information

2. Parasoft

a. Procedural

Parasoft C++ (with integrated Code Wizard) detected 95 occurrences of

eight different rule violations (Figure 29).

Figure 29: Parasoft Procedural Static Analysis Report

b. Functional

Parasoft C++ (with integrated Code Wizard) detected eighty-three

occurrences of eight different rule violations (Figure 30) during static analysis of the

functional version of the source code. Of the 328 test cases conducted, 321 passed and

seven reported time-out errors (Figure 31).

58

c. Object-Oriented

Parasoft C++ (with integrated Code Wizard) detected 122 occurrences of

12 different rule violations during static analysis of the object-oriented version of the

source code. The findings for the six classes are summarized in Figure 32. Of the

seventy-one test cases conducted, fifty passed and twenty-one reported access violation

exception errors (Figure 33). Insure++ reported thirty-nine outstanding memory

references.

 Figure 30: Parasoft Functional Static Analysis Report

59

Figure 31: Parasoft Functional Dynamic Analysis Report

 Clock EventList IdList Network Simulation StationList Total

Ecpp-2 3 1 11 1 16

Ecpp-12 2 1 3

Mecpp-2 2 18 20

Ucs-13 2 1 3 17 1 24

Ucs-14 2 1 3 14 20

Ucs-15 3 5 1 9 1 19

Ucs-23 2 3 5

Ucs-27 2 3 5

Ucs-32 1 1

Ucs-35 1 1

Ucs-37 2 2

User-208 2 4 6

Figure 32: Parasoft Object-Oriented Static Analysis Summary Table

60

Figure 33: Parasoft Object-Oriented Dynamic Report

d. Reporting Characteristics

C++Test, CodeWizard, and Insure++ provide itemized reports of

discovered errors, but do not provide extensive summary reports. Thus, the reports

generated by these tools are quite different than those provided by LDRA.

During the execution of testing C++Test reports the progress using bar

graphs to indicate the number and percentage of methods and tests conducted.

Additionally, if coverage is enabled the tools will highlight the lines of code which have

been tested. Figure 34 demonstrates the reports shown during test execution.

61

Figure 34: Parasoft Testing Status Report

Results of the static analysis conducted upon the source code are reported

under the “Static analysis” tab under the “Results” tab as shown in Figure 35. The

number in square braces next to the file name indicates the total number of occurrences

of coding rule violations within that file. The next line indicates the number of

occurrences of violations of a specific coding rule. Expanding the line reveals the

location (i.e., source code line number) of each occurrence of the violation.

62

Figure 35: Parasoft Static Analysis Report

Results of the dynamic analysis conducted on the source code are reported

under the “Dynamic analysis” tab under the “Results” tab as shown in Figure 31. Each

line indicates the status of testing for an individual method. The numbers in the square

braces on the first line indicate the following information (Figure 36):

• OK: The number of test cases that in which the method returned and had
the correct return value and/or post-condition

• Failed: The number of test cases in which the test did not have the correct
return value or post-condition

• Error: The number of test cases in which the method crashed

• Total: The total number of test cases used

63

Figure 36: Parasoft Method Test Status

Clicking on a test case’s results will cause its branch to expand. If a test

case passes, it will display (in green) the number of times it was executed (in braces) and

its arguments, returns, preconditions, and post-conditions as shown in the second line of

Figure 37.

Figure 37: Parasoft Method Test Case Detailed Report

If a test case had an error or failed, expanding its branch will display the number

of times it was executed (in braces, in red), its arguments, returns, preconditions, post-

conditions, and details about the type of exception or error found. It also indicates the

line number at which the exception or error occurred as shown in the lines three through

nine in Figure 37.

3. Logiscope

a. Procedural

Telelogic’s Logiscope reported 218 occurrences of fourteen different

programming rule violations as listed in Figure 38. If a rule is violated, it is so annotated

64

Rule
Mnemonic Rule Name State Lines

ansi Function declaration in
ANSI syntax Violated 55,

asscal Assignment in function calls Not
Violated -

brkcont Break and continue
forbidden Violated 168, 170, 200, 231,

cast Prefer C++-style Casts Violated 67, 121, 199, 221, 225, 225, 243, 264, 266, 299, 301,
307, 309, 327, 329, 383,

const Literal constants Violated

25, 25, 25, 25, 25, 25, 28, 57, 58, 59, 60, 61, 63, 64,
64, 64, 67, 68, 68, 68, 71, 73, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 95, 97, 107, 118, 134, 146, 148, 177,
183, 192, 200, 234, 236, 238, 238, 247, 247, 252, 254,
255, 260, 262, 267, 267, 271, 275, 277, 278, 283, 287,
291, 296, 298, 302, 302, 310, 310, 317, 319, 320, 321,
325, 330, 330, 334, 338, 340, 341, 348, 351, 362, 364,
367, 369, 374, 389, 390, 391, 392, 393, 394, 398, 400,
406, 411, 418, 419, 420, 421, 422, 423, 424, 425, 426,

ctrlblock Blocks in control statements Violated 104, 113, 123, 151, 170, 192, 200, 231, 254, 267, 270,
277, 287, 287, 302, 310, 330, 333, 340, 357, 369,

exprcplx Expressions complexity Violated 64, 67, 225, 266, 301, 309, 329, 383, 408, 413,

headercom Function and class header
comments Violated 55,

Headercom Module header comments Violated 1,

identl Identifier length Violated 34, 35, 36, 36, 52, 52, 52, 52,

sgdecl A single variable per
declaration Violated 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 52, 53,

slcom Use // comments Violated 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 45, 46, 48, 49,
93, 103, 129, 154, 159, 197, 207, 283, 348, 356,

slstat One statement per line Violated 104, 113, 123, 151, 170, 200, 231, 267, 287, 302, 310,
330,

swdef default within switch Violated 152,

Figure 38: Logiscope Procedural Rule Violations

65

in red within the “State” column followed by a listing of source code line numbers where

the rule violation occurs in the “Lines” column. If a rule is not violated, it is so stated in

green in the “State” column. Only one rule which was not violated is shown for

demonstration purposes, all other rules which were not violated were removed from the

table for space concerns.

b. Functional

Technical difficulties were experienced in trying to conduct tests on the

functional version of the software. Test results were inconclusive.

c. Object-Oriented

Logiscope identified 372 occurrences of twenty different rules violations

in the object-oriented version of the network simulation program. The reports are in the

same format as for procedural with each file’s violations displayed in a separate table.

Technical difficulties were encountered with the Quality Report. Function level

attributes were measured to be in the “Excellent” or “Good” range for more than 90% of

the functions.

d. Reporting Characteristics

Logiscope provides its reports in HTML format, which allows for easy

navigation within the reports. The Rules report contains the table listed in Figure 38.

Additionally, it includes a separate table for each rule listing the occurrences of violations

for each file (Figure 39). There is an additional “Synthesis Table” which creates a matrix

summarizing the number of violations of each rule per each file. Each mention of a rule

is hyperlinked to a detailed explanation of the rule at the bottom of the report. File names

are linked to the table which lists the violations within that report. The reports also list

the date and time the analysis was last conducted on each file. This feature assists in the

management of the testing reports.

66

The Quality report is also in HTML format and provides similar hyperlink

features as the Rules report. When analyzing object-oriented programs, Logiscope

parammode : Parameters mode

File Name State Lines
clock.cpp Violated 14, 14, 14, 32, 41, 50,

eventList.cpp 29, 29, 116, 116, 116,
idList.cpp Violated 54, 54, 59, 64, 64,

network.cpp Violated 8, 14, 35,

simulation.cpp Violated
87, 87, 115, 115, 115, 160, 160, 160, 240,
240, 240, 348, 348, 348, 402, 402, 402,
447, 447, 448, 448, 492, 492, 28,

stationList.cpp Violated 28, 41, 54, 59, 59, 59, 63, 63, 67, 67, 71,

Violated

Figure 39: Logiscope Rule Violation Report

provides reports on three levels: application, class, and function. At the application level,

the project is given a Maintainability score of Excellent, Good, Fair or Poor. The score is

based on the project’s scoring in four areas: Analyzability, Changeability, Stability, and

Testability. All five areas are hyperlinked to the functions the tool uses to calculate the

scores. The scoring tables are followed by a table listing over twenty application level

metrics including Method Inheritance Factor, Method Hiding Factor, Polymorphism

Factor, Coupling Factor, and many others including cyclomatic complexity measures.

The Class level section of the report displays the same attributes as the

Application Level with the addition of three metrics: reusability, usability, and

specializability. Again, each is hyperlinked to explanations of the methods for

determining each attribute’s values.

B. TESTING TOOL METRICS

 During the application of the three testing-tool suites on the three software

versions, measurements were taken to calculate the testing-tool metrics.

67

1. Human Interface Design

 To calculate the human-interface design (HID) metric, measurements were taken

during three operations: establishing test project, conducting test project, and viewing

testing results.

While conducting the operations with the LDRA tools, there were six occasions

that required the user to transfer from the keyboard to the mouse or vice versa. Dividing

this number by the number of operations (three) results in an average of two keyboard-to-

mouse switches (KMS). There were fifteen input fields resulting in five average input

fields per functions (IFPF). Eleven of the input fields required only mouse clicks and

six required entry of strings totaling eighty-three characters. The average length of

input fields (ALIF) was calculated by dividing the sum of these inputs (ninety-four) by

the number of input fields (sixteen) resulting in an ALIF of six. In attempting to identify

the functions of sixteen buttons, eleven were identified correctly. The percentage of

68.75 was subtracted from 100, divided by ten, and rounded to the nearest integer to

arrive at a button recognition factor (BR) of three. The sum of KMS, IFPF, ALIF, and

BR earns LDRA a HID score of sixteen.

The same operations were performed with the Telelogic products. There were

fifteen occasions that required the user to transfer from the keyboard to the mouse or vice

versa. Dividing this number by the number of operations (three) results in an average of

five keyboard-to-mouse switches (KMS). There were twenty-four input fields resulting

in eight average input fields per functions (IFPF). Seventeen of the input fields required

only mouse clicks and seven required entry of strings totaling 146 characters. The

average length of input fields (ALIF) was calculated by dividing the sum of these inputs

(163) by the number of input fields (twenty-four) resulting in an ALIF of seven. In

attempting to identify the functions of ten buttons, four were identified correctly. The

percentage of forty was subtracted from 100 and divided by ten to arrive at a button

recognition factor (BR) of six. The sum of KMS, IFPF, ALIF, and BR earns LDRA a

HID score of twenty-six.

Repeating the operations with the Parasoft tools, there were six occasions that

required the user to transfer from the keyboard to the mouse or vice versa. Dividing this

68

number by the number of operations (three) results in an average of two keyboard-to-

mouse switches (KMS). There were twenty-two input fields resulting in eight average

input fields per functions (IFPF). Sixteen of the input fields required only mouse clicks

and six required entry of strings totaling sixty-nine characters. The average length of

input fields (ALIF) was calculated by dividing the sum of these inputs (eighty-seven) by

the number of input fields (twenty-two) resulting in an ALIF of four. In attempting to

identify the functions of sixteen buttons, fourteen were identified correctly. The

percentage of seventy-five was subtracted from 100, divided by ten and rounded to the

nearest integer to arrive at a button recognition factor (BR) of three. The sum of KMS,

IFPF, ALIF, and BR earns LDRA a HID score of seventeen. The HID scores for the

three tool suites are shown in Table 1.

Table 1. Human-Interface Design Scores

 Parasoft Telelogic LDRA

KMS 2 5 2

IFPF 8 8 5

ALIF 4 7 6

BR 3 6 3

HID 17 26 16

2. Test Case Generation

Test case generation (TCG) measurements were also obtained for each group of

tools. LDRA does not automatically generate test cases but does provide user-friendly

features such as pull-down menus for created test cases therefore it was assigned an eight

for its level of automated test case generation (ATG). LDRA offers user-friendly features

to allow for modifying existing test cases so it earned a score of ten for its level of test

case reuse functionality (TRF). Telelogic does provide automatic test case generation so

69

it earned an ATG score of ten. However, authors were unable to find reference to test

case modification within the testing tool application or documentation. Therefore, it was

not assigned a TRF value. Parasoft also provides automatic test case generation and user-

friendly test-case-reuse functions, resulting in scoring ten in both ATG and TRF. The

sums of the ATG and TRF are given in Table 2.

Table 2. Test-Case Generation Scores

 Parasoft Telelogic LDRA

ATG 10 10 8

TRF 10 0 10

TCG 20 10 18

3. Reporting Features

The Reporting Features (RF) metric is determined by one point for automatically

generating summary reports and one point for producing reports in a format (e.g., HTML

or ASCII text documents) that are viewable outside the application. LDRA and Telelogic

automatically generate summary reports formatted in HTML earning a RF measure of

two for each vendor. Parasoft also automatically produces summary reports, but they

must be viewed within the Parasoft testing application. Therefore, Parasoft’s RF measure

is one.

4. Response Time

Each tool performed well with regards to response time. LDRA averaged twenty-

five minutes in performing its tests. Telelogic averaged approximately thirty-five

minutes. Parasoft averaged forty-three minutes.

5. Feature Support

The Feature Support (FS) is the count of the following features that are supported:

tool supports user-written functions extending tool functionality, stores information in a

database open to the user, and integrates itself into software development tools. LDRA

70

supports all these features resulting in a FS of three. Telelogic supports an open database

and integration, but the authors were unable to determine its extendibility support.

Telelogic earned a FS score of two. Parasoft integrates itself with software development

tools, but no information regarding the two other features was available. Therefore,

Parasoft’s FS value was assigned a value of one.

6. Metric Suites Supported

The Metric Suites Supported (MSS) metric is based on the tool’s support of three

different software quality metric suites: McCabe, function points, and Halstead. Parasoft

does not report on any of these metrics, and hence, it is assigned a value of zero.

Telelogic and LDRA report on McCabe and Halstead, but not function points, earning

each a MSS value of two. LDRA is developing the capability to report function-point

metrics.

7. Maximum Number of Classes

No tool reported a limit on the number of classes it could support when testing

object-oriented programs. Even so, this metric should remain within the testing tool

metric. It could be severely damaging to a software development project’s success if a

tool were selected and implemented only to discover it could not support the number of

classes contained in the project.

8. Object-Oriented Software Quality Metrics

The Object-oriented Software Quality Metrics is the count of various object-

oriented software metrics including those from the metrics suites created by Chidamber

& Kemmerer, Lie & Henry, Lorenz & Kidd, and Henry & Kafura. Parasoft does not

report any of these metrics, resulting in no score. Telelogic supports the Chidamber &

Kemmerer suite, the Le & Henry suite, as well as several from the Lorenz & Kidd suite,

thus earning an OOSWM value of twelve. LDRA also supports metrics from several of

the suites warranting a score of eleven. Measurement of this metric is complicated

through tools referring to measurements by titles not matching those listed in the suites.

Project managers should consult tool documentation or vendor representatives if a

desired metric does not appear to be supported.

71

9. Tool Management

None of the three testing tool suites provide different access levels or other

information control methods. Tool management must be controlled via computer policies

implemented in the operating system and other applications outside of the suite of testing

tools.

10. User Control

All tools offered extensive user control of which portions of the code would be

tested by a specified test case. Each allowed the user to specify a function, class, or

project, or any combination of the three, to be tested.

11. Other Testing Tool Metrics

The remaining testing tool metrics require execution of extensive experiments or

input from tool vendors. The scope of our research prevents conducting detailed

experiments. Along with insufficient input from the vendors, this prevents analysis of the

remaining metrics.

72

V. RESULTS

A. TESTING TOOL RESULTS

The three suites of testing tools provided interesting results on the relative quality

of the three versions of the software under test. LDRA’s Testbed reported an increasing

number of programming-standard violations as the procedural version was first converted

to the functional design then translated into the object-oriented version. The number of

standards violations also increased as the design moved away from procedural design.

Although the quantity of violations and the quantity of types of violations increased, the

cyclomatic complexity decreased at each increment. Statement and branch coverage did

not significantly differ across the three versions. While the other tools reported different

information, their results were consistent with an increasing number of errors discovered

in the non-procedural version yet increased levels of quality. Table 3 summarizes the

findings.

Table 3. Summary of Tool Findings

 Procedural Functional Object-Oriented
LDRA 88% statement coverage 90% statement coverage Not available

 83% branch coverage 86% branch coverage Not available
 130 knots 109 knots 56 knots
 61 cyclomatic

complexity
55 cyclomatic
complexity

47 cyclomatic
complexity

 109 occurrences of 18
different mandatory
standards

115 occurrences of 18
different mandatory
standards

401 occurrences of 31
different mandatory
standards

 11 occurrences of 3
different checking
standards

14 occurrences of 4
different checking
standards

102 occurrences of 9
different checking
standards

 80 occurrences of 6
different optional
standards

36 occurrences of 6
different optional
standards

75 occurrences of 9
different optional
standards

Parasoft 95 occurrences of 8
different rules
violations

83 occurrences of 8
different rules violations

122 occurrences of 12
different rules
violations

Telelogic 218 occurrences of 14
different rules
violations

Not available 372 occurrences of 20
different rules
violations

73

The tools offer differing views of the quality of the software under test. When

testing the procedural program, LDRA reported 200 occurrences of twenty-seven

different coding standards, Telelogic reported a similar 218 occurrences but of only

fourteen different rule violations, and Parasoft reported only ninety-five occurrences of

only eight different rule violations. These differences can be attributed to the different

standards and rules that are tested for by each tool. LDRA appends several industrial

standards such as the Motor Industry Software Reliability Association (MISRA) C

Standard and the Federal Aviation Authority’s DO-178B standard. Likewise, the set of

standards tested for by Telelogic and Parasoft intersect but are not identical.

Similar results occur when comparing tool results for the functional and object-

oriented versions. Project managers should compare these differences to determine

whether they would have an affect on the tool selection decision. If the additional

standards used by LDRA are not an issue for current or prospective customers, the impact

would be minimal.

B. TESTING TOOL METRIC RESULTS

After developing the proposed testing tool metrics, we applied them to the three

testing-tool suites. During the process of applying the metrics, we discovered that several

of the metrics are quite difficult, if not impossible, to calculate without having additional

information supplied by the tool vendor. For example, if a vendor has not conducted a

study on the tool’s operational retainability by its users, experiments would need to be

designed and conducted to evaluate the performance of users in applying the tools. If a

vendor does not have statistics on its average response time to customer support requests,

calculating the measure would be impossible.

Success was achieved in applying several of the metrics including human-

interface design (HID), test-case generation (TCG), and reporting features (RF). HID

measurements were calculated for each testing tool based on the sub-metrics of average

keyboard-to-mouse switches (KMS), average input fields per function (IFPF), average

length of input fields (ALIF), and button recognition (BR) when applicable. The sub-

metrics demonstrated non-coarseness (different values were measured), finiteness (no

74

metric was the same for all tools), and non-uniqueness (some equal values were

obtained). The HID measurements were all unique, indicating that the measurement

could be useful in comparing tools during the evaluation and selection process.

Test-case generation (TCG) measurements also provided unique measurements

for each tool. Sub-metrics measuring levels of automated test-case generation (ATG) and

test case reuse functionality (TRF) demonstrated the qualities of non-coarseness,

finiteness, and non-uniqueness.

Reporting features (RF) measurements were also successful. It is simple to

determine whether a tool automatically generates summary reports (SR) that are viewable

without the tool application running (e.g., HTML or ASCII text document) (ER). The RF

metric is non-coarse, finite, and non-unique. However, because each tool earned a SR

score of one, additional testing should be conducted to determine SR’s level of non-

uniqueness.

Response time (RT) measurements for the three tools were all different. This

indicates that RT is non-coarse and finite. Although not proven, it seems apparent that if

two tools were to complete a test run in the same amount time, then they would receive a

non-unique score.

No tools shared the same feature support (FS) nor Object-Oriented Software

Quality Metrics (OOSWM) measurements. Therefore, they are non-coarse and finite, but

an expanded study group of tools is required to verify their non-uniqueness.

Two tools earned the same metric-suite-supported score indicating non-

uniqueness, while the third earned a different score showing the metric’s non-coarseness

and finiteness.

All three tools earned the same score in the Tool Management and User Control

metrics. Further research must be conducted to determine the validity and usefulness of

this metric.

The Maturity & Customer Base, Ease of Use, Tool Support, Estimated Return on

Investment, Reliability, and Maximum Number of Parameters metrics were not

75

completed. In order to do so would involve conducting extensive experiments or

obtaining tool-vendor input, the latter of which is not readily available.

76

VI. CONCLUSION

A. SUMMARY
Automated testing tools vary in their underlying approach, quality, and ease-of-

use, among other characteristics. Therefore, evaluating available tools and selecting the

most appropriate suite of tools is vital to project success. The tool selection process,

however, can be difficult and time-consuming due to the lack of metrics for measuring a

tool’s characteristics and comparing them to other tools. We have proposed a suite of

objective metrics for measuring tool characteristics, to aid decision maker in

systematically evaluating and selecting automated testing tools. These metrics are not

tied to a specific architectural framework or programming language.

B. RECOMMENDATIONS FOR FUTURE WORK

The recommendations for future work include conducting more intensive testing

of the tools cited in this thesis to include regression testing, testing the tools against larger

and more complex software systems, including additional tools in the analyses, and

analyzing the validity and utility of the proposed testing-tool metrics.

Conducting more intensive testing of previous tools includes creating additional

test cases and modifying default test settings to improve test coverage and conducting

regression testing. In our research, we used the default test settings of each tool to

provide a baseline for measuring tool characteristics. Further research could be

conducted to compare the testing tools under various operating system configurations and

tool settings. Additional research could be conducted to measure a tool’s capability and

efficiency in measuring and improving testing coverage through modifying default

settings and incorporating additional test cases. Research may also be conducted to

measure a tool’s ability to conduct and manage regression testing.

In our research, we implemented only three suites of testing tools that support

C++ programs. Further work could incorporate a larger number of suites from different

vendors such that a wide spectrum of programming languages are supported by the pool

77

of tool suites. This would reduce the likelihood of language-specific factors affecting the

research findings.

Our case study of a discrete-event simulation program could be supplemented by

case studies for which the target software has a higher degree of encapsulation,

inheritance, and polymorphism. The results could be used to determine the tools’

capability and efficiency in dealing with such attributes.

The greatest opportunity for follow-on work is to research the validity and utility

of the proposed suite of testing-tool metrics. The proposed metrics are based on the

research conducted on evaluation versions of three commercially available suites of

testing tools. Further research could be conducted to determine the metrics’ validity in

measuring the characteristics of testing tools and to ascertain their utility in evaluating

and selecting among testing tools. For instance, are the metrics invalid and therefore

useless? Do the proposed metrics provide valid measurements but provide minimal

usefulness in the tool selection process? Or do they provide valid measurements that are

useful in evaluating similarities and differences between automated software testing

tools?

78

APPENDIX A. PROCEDURAL CODE

This appendix contains the procedural version of the CSMA/CD simulation

program.

include <stdio.h>

include <stdlib.h>

include <math.h>

define MAX_STATIONS 10 /* Number of stations */

define BUS_RATE 2000000.0 /* Transmission rate in bps*/

define PACKET_LENGTH 1000.0 /* Packet length (bits) */

define BUS_LENGTH 2000.0 /* Bus length in meters */

define MAX_BACKOFF 15.0 /* Backoff period in slots*/

define PERSIST 0.0 /* Persistence */

define JAM_PERIOD 5.0 /* Jamming period */

define MAX_PACKETS 226 /* Maximum packets to be

transmitted in a simulation run */

define FACTOR 1000.0 /* A factor used for changing

units of time */

define MAX_Q_SIZE 50 /* Maximum queue size */

define ID_SIZE 50 /* Size of the identity array */

define DEGREES_FR 5 /* Degrees of freedom */

double arrival_rate; /* arrival rate (in packets/sec) per station */

double arrival_rate_slots; /* arrival rate (in packets/slot) per

station */

double packet_time; /* packet transmission time */

79

double t_dist_par[10]

={12.706,4.303,3.182,2.776,2.571,2.447,2.365,2.306,

 2.262, 2.228}; /*

T-distribution parameters */

double start_time [ID_SIZE]; /* starting time of packet */

double event_time [MAX_STATIONS][4]; /* time of occurrence of an event

*/

double delay_ci [DEGREES_FR + 1]; /* array to store delay values */

double utilization_ci[DEGREES_FR + 1]; /* array to store utilization

values*/

double throughput_ci[DEGREES_FR + 1]; /* array to store throughput

values */

double collision_rate_ci[DEGREES_FR + 1]; /* array for collision rate

values*/

double slot_size, p, ch_busy;

double rho, clock, d_clock, no_pkts_departed, next_event_time;

double x, logx, rand_size, infinite;

double delay, total_delay, average_delay;

double delay_sum, delay_sqr, delay_var, delay_sdv, delay_con_int;

double utilization, utilization_sum, utilization_sqr;

double utilization_var, utilization_sdv, utilization_con_int;

double throughput, throughput_sum;

double collision_rate, collision_rate_sum, collision_end_time;

double select_prob, backoff_time, packet_slots;

int queue_size [MAX_STATIONS]; /* current queue size at a station */

int queue_id [MAX_STATIONS][MAX_Q_SIZE]; /* array for id_numbers of

packets */

int id_list [ID_SIZE]; /* array of id_numbers */

80

int id_attempt_stn [MAX_STATIONS]; /* array to identify attempting

stations */

int j, ic, ii, next_station, next_event, next, id_number;

int no_attempts, no_trans, no_collisions, select_flag;

int main ()

{

printf("The following results are for: \n");

printf("Degrees of freedom = %d\n", DEGREES_FR);

printf("Confidence Interval = 95 percent \n");

printf("=== \n");

printf("\n");

arrival_rate = 0.0;

slot_size = BUS_LENGTH * FACTOR * 5.0 * pow (10.0, -9.0);

p = PERSIST;

packet_time = PACKET_LENGTH * FACTOR / BUS_RATE;

packet_slots = (double) (int) (packet_time/slot_size) + 1.0;

infinite = 1.0 * pow (10.0, 30.0);

rand_size = RAND_MAX;

for (ii=0; ii < 10; ii++)

 {

 arrival_rate = arrival_rate + 20.0;

 for (ic = 0; ic <= DEGREES_FR; ic++)

 {

81

 rho = 0.0;

 ch_busy = 0.0;

 clock = 0.0;

 d_clock = 0.0;

 collision_end_time = 0.0;

 utilization = 0.0;

 no_pkts_departed = 0.0;

 total_delay = 0.0;

 next_event_time = 0.0;

 average_delay = 0.0;

 no_collisions = 0;

 select_flag = 0;

 /* Compute the traffic intensity. If the traffic intensity

 is greater than unity, stop the program. */

 rho = arrival_rate * PACKET_LENGTH * MAX_STATIONS / BUS_RATE;

 if (rho >= 1.0)

 {

 printf("Traffic intensity is too high\n");

 exit(1);

 }

 /* Initialize all variables to their appropriate values. */

 arrival_rate_slots = arrival_rate * slot_size;

 for (int i = 0; i < MAX_STATIONS; i++) queue_size[i]=0;

82

 for (int k = 0; k < ID_SIZE; k++)

 {

 start_time[k] = 0.0;

 id_list[k] = 0;

 }

 for (int m = 0; m < MAX_STATIONS; m++)

 {

 for(int l = 0; l < MAX_Q_SIZE; l++) queue_id[m][l]=0;

 }

 for (int n = 0; n < MAX_STATIONS; n++)

 {

 for (j = 0; j < 4; j++)

 {

 event_time[n][j] = infinite;

 x = (double) rand();

 x = x * FACTOR/rand_size;

 if (j == 0) event_time[n][j] = x;

 }

 }

 /* Scan the event list and pick the next event to be executed. */

 while (no_pkts_departed < MAX_PACKETS)

 {

 next_event_time = infinite;

 for (int i = 0; i < MAX_STATIONS; i++)

83

 {

 for (j = 0; j < 4; j++)

 {

 if (next_event_time > event_time[i][j])

 {

 next_event_time = event_time[i][j];

 next_station = i;

 next_event = j;

 }

 }

 }

 clock = next_event_time;

 if (next_event > 3)

 {

 printf("Check the event-list");

 exit(1);

 }

 while (d_clock <= clock) d_clock ++ ;

 switch (next_event)

 {

 case 0: /* This is an arrival event. */

 {

 /* Select an identification for the arriving message */

 id_number = -1;

84

 for (int i = 0; i < ID_SIZE; i++)

 {

 if (id_list[i] == 0)

 {

 id_number = i;

 id_list[i] = 1;

 break;

 }

 if (id_number != -1) continue;

 }

 if (id_number == -1)

 {

 printf("Check the ID-list.");

 exit(1);

 }

 queue_size[next_station] ++ ;

 if (queue_size[next_station] > MAX_Q_SIZE)

 {

 printf("The queue size is large and is = %d\n",

queue_size[next_station]);

 exit(1);

 }

 queue_id[next_station][(queue_size[next_station]-1)] =

id_number;

85
 start_time[id_number] = clock;

 if (queue_size[next_station] == 1)

 {

 event_time[next_station][1] = d_clock;

 if (event_time[next_station][1] <= collision_end_time)

 event_time[next_station][1] = collision_end_time + 1.0;

 }

 /* Schedule the next arrival */

 for (;;)

 {

 x = (double) rand();

 if (x != 0.0) break;

 }

 logx = -log(x/rand_size) * FACTOR / arrival_rate_slots;

 event_time[next_station][next_event] = clock + logx;

 break;

 }

 case 1: /* This is an attempt event. */

 {

 no_attempts = 0;

 for (int i = 0; i < MAX_STATIONS; i++)

 {

 if (event_time[i][1] == clock)

 {

 no_attempts ++ ;

 id_attempt_stn[no_attempts - 1] = i;

86

 }

 }

 select_flag = 0;

 if (no_attempts > 1)

 {

 x = (double) rand();

 x = x/rand_size;

 for (int i = 0; i < no_attempts; i++)

 {

 select_prob = (double) (i+1)/ ((double) no_attempts);

 if (x <= select_prob)

 {

 next_station = id_attempt_stn[i];

 select_flag = 1;

 }

 if (select_flag == 1) continue;

 }

 }

 if (ch_busy == 0.0)

 {

 if (p == 0.0)

 {

 event_time[next_station][2] = clock + 1.0;

 event_time[next_station][1] = infinite;

 }

 else

 {

 x = (double) rand();

87

 x = x/rand_size;

 if (x < p)

 {

 event_time[next_station][2] = clock + 1.0;

 event_time[next_station][1] = infinite;

 }

 else

 {

 event_time[next_station][1] = clock + 1.0;

 if (event_time[next_station][1] <= collision_end_time)

 event_time[next_station][1] = collision_end_time + 1.0;

 event_time[next_station][2] = infinite;

 }

 }

 }

 if (ch_busy == 1.0)

 {

 if (p == 0.0)

 {

 x = (double) rand();

 x = x/rand_size;

 backoff_time = (double) (int) (x * MAX_BACKOFF);

 if (backoff_time < 1.0) backoff_time = 1.0;

 event_time[next_station][1] = clock + backoff_time;

 if (event_time[next_station][1] <= collision_end_time)

 event_time[next_station][1] = collision_end_time +

backoff_time;

88

 event_time[next_station][2] = infinite;

 }

 else

 {

 event_time[next_station][1] = clock + 1.0;

 if (event_time[next_station][1] <= collision_end_time)

 event_time[next_station][1] = collision_end_time + 1.0;

 event_time[next_station][2] = infinite;

 }

 }

 break;

 }

 case 2: /* This is a transmission event */

 {

 no_trans = 0;

 for (int i = 0; i < MAX_STATIONS; i++)

 if (event_time[i][2] == clock) no_trans ++ ;

 if (no_trans > 1)

 {

 {

 collision_end_time = clock + JAM_PERIOD + 2.0;

 no_collisions ++ ;

 }

 for (int i = 0; i < MAX_STATIONS; i++)

 {

 if (event_time[i][2] == clock)

 {

 event_time[i][2] = infinite;

89

 x = (double) rand();

 x = x/rand_size;

 backoff_time = (double) (int) (x * MAX_BACKOFF);

 if (backoff_time < 1.0) backoff_time = 1.0;

 event_time[i][1] = collision_end_time + backoff_time;

 }

 if (event_time[i][1] <= collision_end_time)

 {

 x = (double) rand();

 x = x/rand_size;

 backoff_time = (double) (int) (x * MAX_BACKOFF);

 if (backoff_time < 1.0) backoff_time = 1.0;

 event_time[i][1] = collision_end_time + backoff_time;

 }

 }

 }

 else

 {

 if (ch_busy != 1.0)

 {

 event_time[next_station][3] = clock + packet_slots ;

 event_time[next_station][2] = infinite;

 ch_busy = 1.0;

 }

 else

 {

 if (p == 0.0)

 {

90

 x = (double) rand();

 x = x/rand_size;

 backoff_time = (double) (int) (x * MAX_BACKOFF);

 if (backoff_time < 1.0) backoff_time = 1.0;

 event_time[next_station][1] = clock + backoff_time;

 if (event_time[next_station][1] <= collision_end_time)

 event_time[next_station][1] = collision_end_time +

backoff_time;

 event_time[next_station][2] = infinite;

 }

 else

 {

 event_time[next_station][1] = clock + 1.0;

 if (event_time[next_station][1] <= collision_end_time)

 event_time[next_station][1] = collision_end_time + 1.0;

 event_time[next_station][2] = infinite;

 }

 }

 }

 break;

 }

 case 3: /* This is a departure event */

 {

 id_number = queue_id[next_station][0];

 ch_busy = 0.0;

 queue_size[next_station] -- ;

91

 /* Push the queue forward */

 for (int i = 0; i < queue_size[next_station]; i++)

 queue_id[next_station][i] = queue_id[next_station][i+1];

 queue_id[next_station][queue_size[next_station]] = 0;

 delay = clock - start_time[id_number];

 total_delay += delay;

 id_list[id_number] = 0;

 no_pkts_departed += 1.0;

 utilization += packet_slots;

 event_time[next_station][3] = infinite;

 if (queue_size[next_station] > 0)

 {

 event_time[next_station][1] = clock + 1.0;

 if (event_time[next_station][1] <= collision_end_time)

 event_time[next_station][1] = collision_end_time + 1.0;

 }

 else

 {

 event_time[next_station][1] = infinite;

 event_time[next_station][2] = infinite;

 }

 break;

 }

 }

 }

 utilization = utilization / clock;

92

 average_delay = total_delay * slot_size / (no_pkts_departed *

FACTOR);

 throughput = no_pkts_departed * FACTOR / (clock * slot_size);

 collision_rate = (double) no_collisions * FACTOR / (clock *

slot_size);

 utilization_ci[ic] = utilization;

 delay_ci[ic] = average_delay;

 throughput_ci[ic] = throughput;

 collision_rate_ci[ic] = collision_rate;

 }

 delay_sum = 0.0;

 delay_sqr = 0.0;

 utilization_sum = 0.0;

 utilization_sqr = 0.0;

 throughput_sum = 0.0;

 collision_rate_sum = 0.0;

 for (ic = 0; ic <= DEGREES_FR; ic++)

 {

 delay_sum += delay_ci[ic];

 delay_sqr += pow (delay_ci[ic],2.0);

 utilization_sum += utilization_ci[ic];

 utilization_sqr += pow (utilization_ci[ic],2.0);

 throughput_sum += throughput_ci[ic];

 collision_rate_sum += collision_rate_ci[ic];

 }

 delay_sum = delay_sum / (DEGREES_FR + 1);

 delay_sqr = delay_sqr / (DEGREES_FR + 1);

 delay_var = delay_sqr - pow(delay_sum,2.0);

 delay_sdv = sqrt(delay_var);

93

 delay_con_int = delay_sdv * t_dist_par[DEGREES_FR-

1]/sqrt(DEGREES_FR);

 utilization_sum = utilization_sum / (DEGREES_FR + 1);

 utilization_sqr = utilization_sqr / (DEGREES_FR + 1);

 utilization_var = utilization_sqr - pow(utilization_sum,2.0);

 utilization_sdv = sqrt(utilization_var);

 utilization_con_int = utilization_sdv * t_dist_par[DEGREES_FR-

1]/sqrt(DEGREES_FR);

 throughput_sum = throughput_sum / (DEGREES_FR + 1);

 collision_rate_sum = collision_rate_sum / (DEGREES_FR + 1);

 printf("For an arrival rate = %g\n",arrival_rate);

 printf("The traffic intensity = %g\n", rho);

 printf("The average delay = %g", delay_sum);

 printf(" +- %g\n", delay_con_int);

 printf("The utilization = %g", utilization_sum);

 printf(" +- %g\n", utilization_con_int);

 printf("The throughput = %g\n", throughput_sum);

 printf("The collision rate = %g\n", collision_rate_sum);

 printf("\n");

 }

return 0;

}

94

APPENDIX B. FUNCTIONAL CODE

This appendix contains the functional version of the CSMA/CD simulation

program. It was created by the authors through the process of implementing functions to

replace sections of code that appeared several times in the procedural version in

Appendix A.

include <stdio.h>

include <stdlib.h>

include <math.h>

define MAX_STATIONS 10 /* Number of stations */

define BUS_RATE 2000000.0 /* Transmission rate in bps*/

define PACKET_LENGTH 1000.0 /* Packet length (bits) */

define BUS_LENGTH 2000.0 /* Bus length in meters */

define MAX_BACKOFF 15.0 /* Backoff period in slots*/

define PERSIST 0.0 /* Persistence */

define JAM_PERIOD 5.0 /* Jamming period */

define MAX_PACKETS 10 /* Maximum packets to be transmitted

in a simulation run */

define FACTOR 1000.0 /* A factor used for changing units

of time */

define MAX_Q_SIZE 500 /* Maximum queue size */

define ID_SIZE 50 /* Size of the identity array */

define DEGREES_FR 5 /* Degrees of freedom */

//arrays

double t_dist_par[10] ={12.706, 4.303, 3.182, 2.776, 2.571,

95

 2.447, 2.365, 2.306, 2.262, 2.228}; /* T-

distribution parameters */

double start_time [ID_SIZE]; /* starting time of packet */

double event_time [MAX_STATIONS][4]; /* time of occurrence of an

event */

double delay_ci [DEGREES_FR + 1]; /* array to store delay values

*/

double utilization_ci[DEGREES_FR + 1]; /* array to store utilization

values*/

double throughput_ci [DEGREES_FR + 1]; /* array to store throughput

values */

double collision_rate_ci[DEGREES_FR + 1]; /* array for collision rate

values*/

//numbers

double arrival_rate; /* arrival rate (in packets/sec) per station

*/

double arrival_rate_slots; /* arrival rate (in packets/slot) per

station */

double packet_time; /* packet transmission time */

double slot_size,

 persistence,

 ch_busy;

double rho,

 clock,

 d_clock,

 num_pkts_departed,

 next_event_time;

double x,

96

 logx,

 rand_size,

 infinite;

double delay,

 total_delay,

 average_delay;

double delay_sum,

 delay_sqr,

 delay_var,

 delay_sdv,

 delay_con_int;

double utilization,

 utilization_sum,

 utilization_sqr;

double utilization_var,

 utilization_sdv,

 utilization_con_int;

double throughput,

 throughput_sum;

double collision_rate,

 collision_rate_sum,

 collision_end_time;

double select_prob,

 backoff_time,

 packet_slots;

int queue_size [MAX_STATIONS]; /* current queue size at a

station */

97

int queue_id [MAX_STATIONS][MAX_Q_SIZE]; /* array for id_numbers of

packets */

int id_list [ID_SIZE]; /* array of id_numbers */

int id_attempt_stn [MAX_STATIONS]; /* array to identify

attempting stations */

//First ints (i, j, ic, ii) only used as local for loop counters.

//They didn't need to be globals.

int next_station,

 next_event,

 id_number;

int num_attempts,

 num_trans,

 num_collisions,

 select_flag;

//---

//Function: pick_event

//Purpose: Scan event list looking for station-event pair with

// the earliest time. Clock moved to this time.

//Post: List is not changed.

//---

void pick_event ()

{

 //set next event time infinitely large

 next_event_time = infinite;

98

 //scan all stations'...

 for (int i = 0; i < MAX_STATIONS; i++)

 {

 //queues

 for (int j = 0; j < 4; j++)

 {

 //if next event time is after station's event's time

 if (next_event_time > event_time[i][j])

 {

 //set next event time to station's event's time

 next_event_time = event_time[i][j];

 //set station and event of next event to perform

 next_station = i;

 next_event = j;

 }//end of if

 }//end of j for

 }//end of i for

 //after finding next soonest event to be performed, set clock

 //to that event time

 clock = next_event_time;

 return;

};//end of pick_event()

99

//---

//Function: arrival_event

//Purpose: Simulate the arrival of a packet at a station that needs

to

// be transmitted.

//Post: Packet is given an id number (if available).

// Station's queue size is incremented if not full.

// Packet id is placed in queue_id array.

// If new packet is station's only packet, schedule time to

// attempt transmission.

// Packet is given start time.

//---

void arrival_event ()

{

 /* Select an identification for the arriving message */

 //set identification number to -1

 id_number = -1;

 //for all i less than number of ids

 for (int i = 0; i < ID_SIZE; i++)

 {

 //if 'flag' at i is zero

 if (id_list[i] == 0)

 {

100

 //set id number of packet to i

 id_number = i;

 //set 'flag' at i to one

 id_list[i] = 1;

 break;

 }

 //if id number was available continue

 if (id_number != -1) continue;

 }

 //if id number wasn't changed, either id's are gone or there

 //is a problem with the id list...

 if (id_number == -1)

 {

 //inform user to check id list and stop program

 printf("Check the ID-list.");

 exit(1);

 }

 //increment station's queue size (to hold new packet)

 queue_size[next_station] ++ ;

 //if station's queue size is too big...

 if (queue_size[next_station] > MAX_Q_SIZE)

 {

 //inform user and stop program

101

 printf("The queue size is large and is = %d\n",

queue_size[next_station]);

 exit(1);

 }

 //place packet in station's queue

 queue_id[next_station][(queue_size[next_station]-1)] = id_number;

 //set packet's start time to current clock value

 start_time[id_number] = clock;

 //if new packet is the station's only packet..

 if (queue_size[next_station] == 1)

 {

 //schedule transmission attempt

 event_time[next_station][1] = d_clock;

 //if a collision period is active...

 if (event_time[next_station][1] <= collision_end_time)

 {

 //delay transmission attempt til collision ends

 event_time[next_station][1] = collision_end_time + 1.0;

 }

 }

 //Schedule the next arrival for the current station

102

 //this is a version of a do/while loop

 for (;;)

 {

 //find a random number that's not zero

 x = (double) rand();

 if (x != 0.0) break;

 }

 //use x to schedule next arrival for current station

 logx = -log(x/rand_size) * FACTOR / arrival_rate_slots;

 event_time[next_station][next_event] = clock + logx;

 return;

};//end of arrival_event ()

//---

//Function: find_backoff_time()

//Purpose: Generate a random number which is then used to pick a

random

// backoff time for rescheduling a transmission attempt.

//Post: No changes to any packet times is made.

//---

void find_backoff_time()

{

 //generate a random number to..

103

 x = (double) rand();

 x = x/rand_size;

 //calculate backoff time

 backoff_time = (double) (int) (x * MAX_BACKOFF);

 //if backoff time is < 1, set to 1.0

 if (backoff_time < 1.0) backoff_time = 1.0;

 return;

}; //end of find_backoff_time()

//---

//Function: resched_attempt()

//Purpose: If zero persistence, reschedule attempt for random time in

// in the future. If one persistence, reschedule attempt for

// next available time.

//Post: Packet attempt time is given value determined by

persistence.

// Packet transmission time is reset to infinite.

//---

void resched_attempt ()

{

 //if persistence is zero...

 if (persistence == 0.0)

 {

 //call function to find backoff time

 find_backoff_time();

104

 //set attempt time to current time plus backoff time

 event_time[next_station][1] = clock + backoff_time;

 //if attempt time falls in a collision period...

 if (event_time[next_station][1] <= collision_end_time)

 //set attempt time to collision end plus backoff time

 event_time[next_station][1] = collision_end_time + backoff_time;

 //set event transmission time to infinite

 event_time[next_station][2] = infinite;

 }

 else//if persistence is not zero

 {

 //set attempt time to next clock increment

 event_time[next_station][1] = clock + 1.0;

 //if new attempt time falls in collision period...

 if (event_time[next_station][1] <= collision_end_time)

 //set attempt time to one clock increment past collision

 event_time[next_station][1] = collision_end_time + 1.0;

 //reset event transmission time

 event_time[next_station][2] = infinite;

 }

}; //end of resched_attempt()

//---

//Function: attempt_event

//Purpose: Determine number of stations trying to transmit.

// If more than 1, pick one at random.

105

// If channel is not busy, and..

// zero persistence: transmit packet

// p persistence: transmit randomly

// If channel is busy,

// zero persistence: find random backoff time and resched

// p persistence: resched for next available slot

//

//

//Post: Packet attempt and transmit times will be altered based

// on nested if/else statements.

//---

void attempt_event ()

{

 //set number of attempts to zero

 num_attempts = 0;

 //for all stations...

 for (int i = 0; i < MAX_STATIONS; i++)

 {

 //if station's next event is ready to transmit

 if (event_time[i][1] == clock)

 {

 //increment number of stations attempting to transmit

 num_attempts ++ ;

 //place id of attempting station in an array

 id_attempt_stn[num_attempts - 1] = i;

106

 }

 }

 //set select flag to zero

 select_flag = 0;

 //if more than one station is trying to transmit...

 if (num_attempts > 1)

 {

 //pick a random number

 x = (double) rand();

 x = x/rand_size;

 //for all stations trying to trasmit...

 for (int i = 0; i < num_attempts; i++)

 {

 //determine select prob

 select_prob = (double) (i+1)/ ((double) num_attempts);

 //if random number is less than select prob...

 if (x <= select_prob)

 {

 //then station is slot i of array gets to transmit

 next_station = id_attempt_stn[i];

 //set selection flag to 'true'

 select_flag = 1;

 }

 //if a station has been chosen continue

107

 if (select_flag == 1) continue;

 }

 }

 //if channel is not busy...

 if (ch_busy == 0.0)

 {

 //and if persistence is zero

 if (persistence == 0.0)

 {

 //transmission time of current event is set

 event_time[next_station][2] = clock + 1.0;

 //attempt time of current event is reset

 event_time[next_station][1] = infinite;

 }

 else//if persistence is not zero

 {

 //generate a random number

 x = (double) rand();

 x = x/rand_size;

 //if random number is less than persistence

 if (x < persistence)

 {

 //set transmission time of current event

 event_time[next_station][2] = clock + 1.0;

 //reset attempt time of current event

 event_time[next_station][1] = infinite;

 }

108

 else//random number is greater than persistence

 {

 //set attempt time of current event (event not transmitted)

 event_time[next_station][1] = clock + 1.0;

 //if new attempt time falls in a collision time...

 if (event_time[next_station][1] <= collision_end_time)

 //delay next attempt til collision ends

 event_time[next_station][1] = collision_end_time + 1.0;

 //ensure transmission time of current event is reset

 event_time[next_station][2] = infinite;

 }

 }

 }

 //if channel is busy...

 if (ch_busy == 1.0)

 //reschedule transmission attempt time

 resched_attempt();

 return;

};//end of attempt_event()

//---

//Function: transmit_event

109

//Purpose: Determine number of statinos trying to transmit.

// If more than one, there is a collision; jam for specified

// time period and have all transmitting stations resched

// attempt to transmit.

// If only one, and

// channel not busy, transmit.

// channel busy, determine reschedule time.

//Post: Packet attempt/transmit time(s) will be updated.

//---

void transmit_event ()

{

 //set number of transmission to zero

 num_trans = 0;

 //for all stations...

 for (int i = 0; i < MAX_STATIONS; i++)

 {

 //if they are currently transmitting, increment number of

transmissions

 if (event_time[i][2] == clock) num_trans ++ ;

 //if there are more than one transmitting stations,

 //there's a collision and ...

 if (num_trans > 1)

 {

 //set collision end time

 collision_end_time = clock + JAM_PERIOD + 2.0;

 //increment collision count

 num_collisions ++ ;

110

 //for all stations...

 for (int i = 0; i < MAX_STATIONS; i++)

 {

 //if they are transmitting...

 if (event_time[i][2] == clock)

 {

 //set transmit time to infinite

 event_time[i][2] = infinite;

 //call function to find backoff time

 find_backoff_time();

 //set attempt time to collision end time plus backoff

time

 event_time[i][1] = collision_end_time + backoff_time;

 }

 //if attempt time is before collision end time

 if (event_time[i][1] <= collision_end_time)

 {

 //call function to find backoff time

 find_backoff_time();

 //set attempt time to collision end time plus backoff

time

 event_time[i][1] = collision_end_time + backoff_time;

 }

 }

 }

111
 else//only one channel trying to transmit

 {

 //if channel not busy...

 if (ch_busy != 1.0)

 {

 //set departure time to clock time + # of packet slots sent

 event_time[next_station][3] = clock + packet_slots ;

 //reset event transmission time

 event_time[next_station][2] = infinite;

 //set channel to busy cause transmitting

 ch_busy = 1.0;

 }

 else//if channel is busy..

 {

 //reschedule transmission attempt time

 resched_attempt();

 }

 }

 }

 return;

};//end of transmit_event ()

//---

//Function: departure_event

//Purpose: Simulate successful transmission.

112

//Post: Free channel and update transmitting station's queue size.

// Calculate delay of packet and other performance

parameters.

// If station's queue not empty, schedule next transmit

attempt.

//---

void departure_event ()

{

 //let id_number be identification number of departing packet

 id_number = queue_id[next_station][0];

 //free transmission medium

 ch_busy = 0.0;

 //decrement queue size

 queue_size[next_station] -- ;

 //Push the queue forward

 for (int i = 0; i < queue_size[next_station]; i++)

 queue_id[next_station][i] = queue_id[next_station][i+1];

 //set departing packet id to 0

 queue_id[next_station][queue_size[next_station]] = 0;

 //calculate delay for departing packet

 delay = clock - start_time[id_number];

 //add delay to total_delay

113

 total_delay += delay;

 //release id number of departing packet

 id_list[id_number] = 0;

 //increment number of packets departed

 num_pkts_departed += 1.0;

 //add packet slots to utilization

 utilization += packet_slots;

 //reset departing packet event time

 event_time[next_station][3] = infinite;

 //if station's queue is not empty

 if (queue_size[next_station] > 0)

 {

 //schedule station's next event for transmission attempt

 event_time[next_station][1] = clock + 1.0;

 //if event time is prior to end of collision end time

 if (event_time[next_station][1] <= collision_end_time)

 //set event time to one increment after collision end time

 event_time[next_station][1] = collision_end_time + 1.0;

 }

 else //if station's queue is empty

 {

 //reset event attempt and transmission times

114

 event_time[next_station][1] = infinite;

 event_time[next_station][2] = infinite;

 }

 return;

}//end of departure_event

//---

//Function: calculate_results

//Purpose: Calculate performance statistics.

//Post: Lists are not changed.

//---

void calculate_results ()

{

 //initialize values

 delay_sum = 0.0;

 delay_sqr = 0.0;

 utilization_sum = 0.0;

 utilization_sqr = 0.0;

 throughput_sum = 0.0;

 collision_rate_sum = 0.0;

 //calculate confidence level values

 for (int ic2 = 0; ic2 <= DEGREES_FR; ic2++)

 {

 delay_sum += delay_ci[ic2];

115

 delay_sqr += pow (delay_ci[ic2],2.0);

 utilization_sum += utilization_ci[ic2];

 utilization_sqr += pow (utilization_ci[ic2],2.0);

 throughput_sum += throughput_ci[ic2];

 collision_rate_sum += collision_rate_ci[ic2];

 }

 //calculate arrival rate's stats

 delay_sum = delay_sum / (DEGREES_FR + 1);

 delay_sqr = delay_sqr / (DEGREES_FR + 1);

 delay_var = delay_sqr - pow(delay_sum,2.0);

 delay_sdv = sqrt(delay_var);

 delay_con_int = delay_sdv * t_dist_par[DEGREES_FR-

1]/sqrt(DEGREES_FR);

 utilization_sum = utilization_sum / (DEGREES_FR + 1);

 utilization_sqr = utilization_sqr / (DEGREES_FR + 1);

 utilization_var = utilization_sqr - pow(utilization_sum,2.0);

 utilization_sdv = sqrt(utilization_var);

 utilization_con_int = utilization_sdv * t_dist_par[DEGREES_FR-

1]/sqrt(DEGREES_FR);

 throughput_sum = throughput_sum / (DEGREES_FR + 1);

 collision_rate_sum = collision_rate_sum / (DEGREES_FR + 1);

 return;

};//end of calculate_results

116

//---

//Function: show_results

//Purpose: Display results of simulation.

//Post: Lists are not changed.

//---

void show_results ()

{

 //display statistics for specified arrival rate

 printf("For an arrival rate = %g\n",arrival_rate);

 printf("The traffic intensity = %g\n", rho);

 printf("The average delay = %g", delay_sum);

 printf(" +- %g\n", delay_con_int);

 printf("The utilization = %g", utilization_sum);

 printf(" +- %g\n", utilization_con_int);

 printf("The throughput = %g\n", throughput_sum);

 printf("The collision rate = %g\n", collision_rate_sum);

 printf("\n");

 return;

};//end of show_results ()

//---

//Beginning of main function.

int main ()

{

117

 //Print intro

 printf("The following results are for: \n");

 printf("Degrees of freedom = %d\n", DEGREES_FR);

 printf("Confidence Interval = 95 percent \n");

 printf("=== \n");

 printf("\n");

 //set/calculate some initial values

 arrival_rate = 0.0;

 slot_size = BUS_LENGTH * FACTOR * 5.0 * pow (10.0, -9.0);

 persistence = PERSIST;

 packet_time = PACKET_LENGTH * FACTOR / BUS_RATE;

 packet_slots = (double) (int) (packet_time/slot_size) + 1.0;

 infinite = 1.0 * pow (10.0, 30.0);

 rand_size = RAND_MAX;

 //perform simulation several times...

 for (int ii=0; ii < 10; ii++)

 {

 //incrementing arrival rate by 20 units each pass through

 arrival_rate = arrival_rate + 20.0;

 //each arrival rate is simulated several times to find confidence

levels

 for (int ic = 0; ic <= DEGREES_FR; ic++)

 {

 rho = 0.0; //traffic intensity (max value is

1.0)

118

 ch_busy = 0.0; //channel is free if 0, otherwise

channel is busy

 clock = 0.0; //simulation clock

 d_clock = 0.0; //clock to determine slot timing

 collision_end_time = 0.0; //the time at which collision ends

 utilization = 0.0; //utilization of channel

 num_pkts_departed = 0.0; //number of packets sent

 total_delay = 0.0; //aggregrate delay of packets

 next_event_time = 0.0; //time to execute next event

 average_delay = 0.0; //average of delays for all

packets

 num_collisions = 0; //number of collisions that occur

 select_flag = 0; //indicates if transmitting

station is selected

 //Compute the traffic intensity

 rho = arrival_rate * PACKET_LENGTH * MAX_STATIONS / BUS_RATE;

 //If greater than unity...

 if (rho >= 1.0)

 {

 //tell user and stop program

 printf("Traffic intensity is too high. \n");

 exit(1);

 }

 /* Initialize all variables to their appropriate values. */

 arrival_rate_slots = arrival_rate * slot_size;

119

 //set queue size at all stations to zero

 for (int i = 0; i < MAX_STATIONS; i++)

 queue_size[i]=0;

 //set start time and id list of all stations to zero

 for (int k = 0; k < ID_SIZE; k++)

 {

 start_time[k] = 0.0;

 id_list[k] = 0;

 }

 //for all stations...

 for (int m = 0; m < MAX_STATIONS; m++)

 {

 //set all event ids to zero

 for(int n = 0; n < MAX_Q_SIZE; n++) queue_id[m][n]=0;

 }

 //for all stations...

 for (int q = 0; q < MAX_STATIONS; q++)

 {

 for (int r = 0; r < 4; r++)

 {

 //set event times to infinite

 event_time[q][r] = infinite;

 //get a random number

 x = (double) rand();

120

 x = x * FACTOR/rand_size;

 //set first event time to random value

 if (r == 0) event_time[q][r] = x;

 }//end of r for loop

 }//end of q loop

 //while have NOT exceeded the max # of packets to send...

 while (num_pkts_departed < MAX_PACKETS)

 {

 //scan event list for next event

 pick_event();

 //if get invalid event type...

 if (next_event > 3)

 {

 //inform user of problem with event list & stop program

 printf("Check the event-list");

 exit(1);

 }//end if

 //while slot clock is less than simulation clock, go to

next slot

 while (d_clock <= clock) d_clock ++ ;

 //use type of next event to choose function to call

 switch (next_event)

 {

121

 //if an arrival event, call arrival function

 case 0:

 arrival_event ();

 break;

 //if an attempt_event, call attempt function

 case 1:

 attempt_event();

 break;

 //if a transmission event, call transmit_event

 case 2:

 transmit_event ();

 break;

 //if a packet departure. call departure function

 case 3:

 departure_event ();

 break;

 }//end of switch

 }//end of while -- done with simulation pass

 //calculate statistics for pass

 utilization = utilization / clock;

 average_delay = total_delay * slot_size / (num_pkts_departed *

FACTOR);

122

 throughput = num_pkts_departed * FACTOR / (clock * slot_size);

 collision_rate = (double) num_collisions * FACTOR / (clock *

slot_size);

 //place results in array for calculating confidence factors

 utilization_ci[ic] = utilization;

 delay_ci[ic] = average_delay;

 throughput_ci[ic] = throughput;

 collision_rate_ci[ic] = collision_rate;

 }//end of ic for loop

 //find results for current arrival rate

 calculate_results();

 //display results for current arrival rate

 show_results();

 }//end of ii for loop

 return 0;

}//end of main

123

THIS PAGE INTENTIONALLY LEFT BLANK

124

APPENDIX C. OBJECT-ORIENTED CODE

This appendix contains the object-oriented version of the CSMA/CD simulation

program. This version was built on the work of Neil Acantilado, including his UML

diagram shown in Appendix D.

The program is divided into five classes, a main file, and a file containing

constants. The simulation.cpp file contains the C++ main function and includes all the

other files. The constants.h file contains thirteen constants that are used throughout the

project by various entities. The remaining ten files consist of the .cpp and .h files that

create the five classes of objects used by the project to represent the network, stations on

a network, a list of events that will occur, a list of ids that represent the packets of

information on the network, and a clock for timing purposes.

125

C-1 SIMULATION.CPP

include <stdio.h>

include <stdlib.h>

include <math.h>

#include "Constants.h"

#include "Clock.h"

#include "EventList.h"

#include "IdList.h"

#include "Network.h"

#include "stationList.h"

 // Holds a list of stations and their queues

 StationList stations;

 // Holds a list of id_numbers and their queues

 IdList ids;

 // Holds a list of 4 type of events

 EventList events;

 // Clock representing simulation process.

 Clock watch;

 // Keeps track of status of channel

 Network csmaNetwork(PERSIST);

126

 // Arrival rate (in packets/sec) per station

 float arrival_rate = 0.0;

 // Represents the end-to-end propagation delay

 float slot_size = BUS_LENGTH * FACTOR * 5.0 * pow (10.0, -9.0);

 // Arrival rate (in packets/slot) per station

 float arrival_rate_slots;

 // packet transmission time

 float packet_time = PACKET_LENGTH * FACTOR / BUS_RATE;

 float packet_slots = (float) (int) (packet_time/slot_size) + 1.0;

 float infinite = 1.0 * pow (10.0, 30.0);

 float rand_size = RAND_MAX;

 // array to store delay values

 double delay_ci[DEGREES_FR + 1];

 // array to store utilization values

 double utilization_ci [DEGREES_FR+1];

 // array to store throughput values

 double throughput_ci [DEGREES_FR+1];

127

 // array for collision rate values

 double collision_rate_ci[DEGREES_FR+1];

 double rho = 0.0;

 double next_event_time;

 double average_delay;

 double collision_rate;

 double throughput;

 int i, j, ic, ii, next_station, next_event, next;

 // T-distribution parameters

 double t_dist_par[] = { 12.706, 4.303, 3.182, 2.776, 2.571,

 2.447, 2.365, 2.306, 2.262, 2.228 };

 double total_delay;

 double delay_sum, delay_con_int;

 double utilization, utilization_sum, utilization_sqr;

 double utilization_var, utilization_sdv, utilization_con_int;

 double throughput_sum;

 double collision_rate_sum;

 double no_pkts_departed;

 double no_collisions;

//***

// Function: double traffic(double rho, double arrival_rate)

// Purpose: Calculate traffic intensity (rho)

128

//***

double traffic(double rho, double arrival_rate)

{

 // Calculate the traffic intensity rho and check to see if it

exceeds

 // the network capacity

 rho = arrival_rate * PACKET_LENGTH * MAX_STATIONS / BUS_RATE;

 if (rho >= 1.0)

 {

 printf("Traffic intensity is too high\n");

 exit(0);

 }

 return rho;

}//end of traffic function

//***

// Function: void depart(double next_event_time, int next_station,

int next_event)

// Purpose: Perform packet departure event.

//***

void depart(double next_event_time, int next_station, int next_event)

{

 int id_number = 0;

 double delay = 0.0;

129

 float time = watch.getTime();

 double collision_end_time = watch.getCollisionEndTime();

 id_number = stations.getQueueId(next_station, 0);

 csmaNetwork.setChannel(0.0);

 stations.decrementQueue(next_station);

 // Push the queue forward

 for (int i = 0; i < stations.queueSize(next_station); i++)

 stations.setQueueId(next_station, i,

stations.getQueueId(next_station, i+1));

 stations.setQueueId(next_station, stations.queueSize(next_station),

0);

 delay = time - ids.getStartTime(id_number);

 total_delay += delay;

 ids.setIdList(id_number, 0);

 no_pkts_departed += 1.0;

 utilization += packet_slots;

 // Schedule the next event for transmission attempt by the station

 events.setEventTime(next_station, 3, infinite);

 if (stations.queueSize(next_station) > 0)

 {

 events.setEventTime(next_station, 1, time + 1.0);

130
 if (events.getEventTime(next_station, 1) <= collision_end_time)

 events.setEventTime(next_station, 1, collision_end_time +

1.0);

 }

 else

 {

 events.setEventTime(next_station, 1, infinite);

 events.setEventTime(next_station, 2, infinite);

 }

}

//***

// Function: void transmit(double next_event_time, int next_station,

int next_event)

// Purpose: Perform packet transmission

//***

void transmit(double next_event_time, int next_station, int next_event)

{

 int no_trans = 0;

 double x = 0.0;

 double collision_end_time = 0.0;

 double time = watch.getTime();

 float rand_size = RAND_MAX;

 // Check to see if a collision has take place.

 for (int i=0; i < MAX_STATIONS; i++)

 if (events.getEventTime(i, 2) == time) no_trans++;

 if (no_trans > 1)

131

 {

 watch.setCollisionEndTime(time + JAM_PERIOD + 2.0);

 no_collisions++;

 collision_end_time = watch.getCollisionEndTime();

 for (int i = 0; i < MAX_STATIONS; i++)

 {

 if (events.getEventTime(i, 2) == time)

 {

 events.setEventTime(i, 2, infinite);

 x = (float) rand();

 x = x/rand_size;

 double backoff_time = (double) (int) (x * MAX_BACKOFF);

 if (backoff_time < 1.0) backoff_time = 1.0;

 events.setEventTime(i, 1, collision_end_time +

backoff_time);

 }

 if (events.getEventTime(i, 1) <= collision_end_time)

 {

 x = (float) rand();

 x = x/rand_size;

 double backoff_time = (double) (int) (x * MAX_BACKOFF);

 if (backoff_time < 1.0) backoff_time = 1.0;

 events.setEventTime(i, 1, collision_end_time +

backoff_time);

 }

 }

132

 }

 else

 {

 if (csmaNetwork.isChannelFree())

 {

 events.setEventTime(next_station, 3, time + packet_slots);

 events.setEventTime(next_station, 2, infinite);

 csmaNetwork.setChannel(1.0);

 }

 else

 {

 if (!csmaNetwork.isPersistent())

 {

 x = (float) rand();

 x = x/rand_size;

 double backoff_time = (double) (int) (x * MAX_BACKOFF);

 if (backoff_time < 1.0) backoff_time = 1.0;

 events.setEventTime(next_station, 1, time + backoff_time);

 if (events.getEventTime(next_station, 1) <=

collision_end_time)

 events.setEventTime(next_station, 1, collision_end_time

+ backoff_time);

 events.setEventTime(next_station, 2, infinite);

 }

 else

 {

 events.setEventTime(next_station, 1, time + 1.0);

133

 if (events.getEventTime(next_station, 1) <=

collision_end_time)

 events.setEventTime(next_station, 1, collision_end_time

+ 1.0);

 events.setEventTime(next_station, 2, infinite);

 }

 }

 }

}

//***

// Function: void attempt(double next_event_time, int next_station,

int next_event)

// Purpose: Perform attempt event

//***

void attempt(double next_event_time, int next_station, int next_event)

{

 int no_attempts = 0;

 int select_flag = 0;

 double x = 0.0;

 double select_prob = 0.0;

 double time = watch.getTime();

 double collision_end_time = watch.getCollisionEndTime();

 float rand_size = RAND_MAX;

 for (int i = 0; i < MAX_STATIONS; i++)

 {

134

 if (events.getEventTime(i, 1) == time)

 {

 no_attempts++;

 stations.setIdAttemptStn(no_attempts-1, i);

 }

 }

 select_flag = 0;

 if (no_attempts > 1)

 {

 x = (float) rand();

 x = x/rand_size;

 for (int i=0; i < no_attempts; i++)

 {

 select_prob = (double) (i+1) / ((double) no_attempts);

 if (x <= select_prob)

 {

 next_station = stations.getIdAttemptStn(i);

 select_flag = 1;

 }

 if (select_flag == 1) continue;

 }

 }

 if (csmaNetwork.isChannelFree())

 {

 if (!csmaNetwork.isPersistent())

135

 {

 events.setEventTime(next_station, 2, time + 1.0);

 events.setEventTime(next_station, 1, infinite);

 }

 else

 {

 x = (float) rand();

 x = x/rand_size;

 if (x < csmaNetwork.getPersistence())

 {

 events.setEventTime(next_station, 2, time + 1.0);

 events.setEventTime(next_station, 1, infinite);

 }

 else

 {

 events.setEventTime(next_station, 1, time + 1.0);

 if (events.getEventTime(next_station, 1) <=

collision_end_time)

 events.setEventTime(next_station, 1, collision_end_time

+ 1.0);

 events.setEventTime(next_station, 2, infinite);

 }

 }

 }

 if (!csmaNetwork.isChannelFree())

 {

 if (!csmaNetwork.isPersistent())

 {

136

 x = (float) rand();

 x = x/rand_size;

 double backoff_time = (double) (int) (x * MAX_BACKOFF);

 if (backoff_time < 1.0) backoff_time = 1.0;

 events.setEventTime(next_station, 1, time + backoff_time);

 if (events.getEventTime(next_station, 1) <=

collision_end_time)

 events.setEventTime(next_station, 1, collision_end_time +

backoff_time);

 events.setEventTime(next_station, 2, infinite);

 }

 else

 {

 events.setEventTime(next_station, 1, time + 1.0);

 if (events.getEventTime(next_station, 1) <= collision_end_time)

 events.setEventTime(next_station, 1, collision_end_time +

1.0);

 events.setEventTime(next_station, 2, infinite);

 }

 }

}

//***

// Function: void arrival(double next_event_time, int next_station,

int next_event)

// Purpose: Perform arrival event

//***

137

void arrival(double next_event_time, int next_station, int next_event)

{

 int id_number = 0;

 double x = 0.0;

 double time = watch.getDTime();

 double d_clock = watch.getDTime();

 double collision_end_time = watch.getCollisionEndTime();

 float rand_size = RAND_MAX;

 // Select an identification for the arriving message

 id_number = ids.SelectIdNumber();

 stations.incrementQueue(next_station);

 stations.setQueueId(next_station, stations.queueSize(next_station)-

1, id_number);

 ids.setStartTime(id_number, time);

 if (stations.queueSize(next_station) == 1)

 {

 events.setEventTime(next_station, 1, d_clock);

 if (events.getEventTime(next_station, 1) <= collision_end_time)

 events.setEventTime(next_station, 1, collision_end_time +

1.0);

 }

 // Schedule the next "arrival" event

138

 for (;;)

 {

 x = (float) rand();

 if (x != 0.0) break;

 }

 double logx = -log(x/rand_size) * FACTOR / arrival_rate_slots;

 events.setEventTime(next_station, next_event, time + logx);

}

//***

// Function: void process(double next_event_time, int next_station,

int next_event)

// Purpose: Determine type of event that occurs next.

//***

void process(double next_event_time, int next_station, int next_event)

{

 watch.setTime(next_event_time);

 if (next_event < 0 || next_event > 3)

 {

 printf("An event was not recognized. Check the event-list");

 return;

 }

 while (watch.getDTime() <= watch.getTime())

139

 watch.incrementDTime();

 switch (next_event)

 {

 case 0: // This is an arrival event.

 {

 arrival(next_event_time, next_station, next_event);

 break;

 }

 case 1: // This is an attempt event.

 {

 attempt(next_event_time, next_station, next_event);

 break;

 }

 case 2: // This is a transmission event.

 {

 transmit(next_event_time, next_station, next_event);

 break;

 }

 case 3: // This is a departure event.

 {

 depart(next_event_time, next_station, next_event);

 break;

 }

 } // switch

}

140

//***

// Function: void compute(double utilization_ci[], double delay_ci[],

// double throughput_ci[], double

collision_rate_ci[])

// Purpose: Compute statistics

//***

void compute(double utilization_ci[], double delay_ci[],

 double throughput_ci[], double

collision_rate_ci[])

{

 double delay_sqr, delay_var, delay_sdv;

 delay_sum = 0.0;

 delay_sqr = 0.0;

 utilization_sum = 0.0;

 utilization_sqr = 0.0;

 throughput_sum = 0.0;

 collision_rate_sum = 0.0;

 for (int ic = 0; ic <= DEGREES_FR; ic++)

 {

 delay_sum += delay_ci[ic];

 delay_sqr += pow(delay_ci[ic],2.0);

 utilization_sum += utilization_ci[ic];

 utilization_sqr += pow(utilization_ci[ic],2.0);

 throughput_sum += throughput_ci[ic];

141
 collision_rate_sum += collision_rate_ci[ic];

 }

 delay_sum = delay_sum / (DEGREES_FR + 1);

 delay_sqr = delay_sqr / (DEGREES_FR + 1);

 delay_var = delay_sqr - pow(delay_sum,2.0);

 delay_sdv = sqrt(delay_var);

 delay_con_int = delay_sdv * t_dist_par[DEGREES_FR-

1]/sqrt(DEGREES_FR);

 utilization_sum = utilization_sum / (DEGREES_FR + 1);

 utilization_sqr = utilization_sqr / (DEGREES_FR + 1);

 utilization_var = utilization_sqr - pow(utilization_sum,2.0);

 utilization_sdv = sqrt(utilization_var);

 utilization_con_int = utilization_sdv * t_dist_par[DEGREES_FR-

1]/sqrt(DEGREES_FR);

 throughput_sum = throughput_sum / (DEGREES_FR + 1);

 collision_rate_sum = collision_rate_sum / (DEGREES_FR + 1);

}

//***

// Function: void output(double rho, double arrival_rate)

// Purpose: Output data

//***

void output(double rho, double arrival_rate)

{

 printf("For an arrival rate = %g\n", arrival_rate);

 printf("The traffic intensity = %g\n" , rho);

 printf("The average delay = %g" , delay_sum);

 printf(" +- %g\n" , delay_con_int);

142
 printf("The utilization = %g" , utilization_sum);

 printf(" +- %g\n" , utilization_con_int);

 printf("The throughput = %g\n" , throughput_sum);

 printf("The collision rate = %g\n" , collision_rate_sum);

 printf("\n");

}

//***

// Function: void initialize()

// Purpose: Initialize class objects.

//***

void initialize()

{

 csmaNetwork.setChannel(0.0);

 watch.reset();

 events.initialize();

 stations.initialize();

 ids.initialize();

}

int main() {

 float rand_size = RAND_MAX;

 // for (ii = 0; ii < 30; ii++) {}

 for (ii = 0; ii < 10; ii++) {

 arrival_rate = arrival_rate + 20.0;

143

 for (ic = 0; ic <= DEGREES_FR; ic++)

 {

 // Initialize all variables to their appropriate values.

 rho = 0.0;

 utilization = 0.0;

 no_pkts_departed = 0.0;

 total_delay = 0.0;

 next_event_time = 0.0;

 average_delay = 0.0;

 no_collisions = 0;

 initialize();

 arrival_rate_slots = arrival_rate * slot_size;

 // Compute traffic intensity

 rho = traffic(rho, arrival_rate);

 while (no_pkts_departed < MAX_PACKETS)

 {

 // Scan the event list and pick the next event to be

executed.

 next_event_time = events.nextEventTime();

 next_station = events.nextStation();

144

 next_event = events.nextEvent();

 process(next_event_time, next_station, next_event);

 }

 // A simulation run is to be terminated

 utilization = utilization / watch.getTime();

 average_delay = total_delay * slot_size / (no_pkts_departed *

FACTOR);

 throughput = no_pkts_departed * FACTOR / (watch.getTime() *

slot_size);

 collision_rate = (double) no_collisions * FACTOR /

(watch.getTime() * slot_size);

 utilization_ci[ic] = utilization;

 delay_ci[ic] = average_delay;

 throughput_ci[ic] = throughput;

 collision_rate_ci[ic] = collision_rate;

 }

 compute(utilization_ci, delay_ci, throughput_ci,

collision_rate_ci);

 output(rho, arrival_rate);

 }

 return 0;

}

145

C-2 CONSTANTS.H

#ifndef _CONSTANTS_H

#define _CONSTANTS_H

include <math.h>

define MAX_STATIONS 10 // Number of stations

define BUS_RATE 2000000.0 // Transmission rate in bps

define PACKET_LENGTH 1000.0 // Packet length (bits)

define BUS_LENGTH 2000.0 // Bus length in meters

define MAX_BACKOFF 15.0 // Backoff period in slots

define PERSIST 0.0 // Persistence

define JAM_PERIOD 5.0 // Jamming period

define MAX_PACKETS 100 // Maximum packets to be transmitted

in a simulation run

define FACTOR 1000.0 // A factor used for changing units

of time

define MAX_Q_SIZE 500 // Maximum queue size

define ID_SIZE 50 // Size of the identity array

define DEGREES_FR 5 // Degrees of freedom

define SIMULATION_RUNS = 10;

#endif

146

C-3 CLOCK.CPP

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "clock.h"

Clock :: Clock() {

 setTime(0.0);

 setDTime(0.0);

 setCollisionEndTime(0.0);

}

Clock :: Clock(float new_time, float newDTime, float newCollEndTime) {

 setTime(new_time);

 setDTime(newDTime);

 setCollisionEndTime(newCollEndTime);

}

float Clock :: getTime() {

 return clock;

}

float Clock :: getDTime() {

 return d_clock;

}

float Clock :: getCollisionEndTime() {

147

 return collision_end_time;

}

void Clock :: setTime(float new_time) {

 if (new_time < 0.0) {

 printf("Invalid time. \n");

 exit(1);

 }

 clock = new_time;

}

void Clock :: setDTime(float new_time){

 if (new_time < 0.0) {

 printf("Invalid time. \n");

 exit(1);

 }

 d_clock = new_time;

}

void Clock :: setCollisionEndTime(float new_time){

 if (new_time < 0.0) {

 printf("Invalid time. \n");

 exit(1);

 }

 collision_end_time = new_time;

148

}

void Clock :: incrementDTime() {

 d_clock++;

}

void Clock :: reset() {

 setTime(0.0);

 setDTime(0.0);

 setCollisionEndTime(0.0);

}

149

C-4 CLOCK.H

#ifndef _CLOCK_H

#define _CLOCK_H

#include <math.h>

class Clock {

public:

 Clock :: Clock();

 Clock :: Clock(float time, float dtime, float cetime);

 float Clock :: getTime();

 float Clock :: getDTime();

 float Clock :: getCollisionEndTime();

 void Clock :: setTime(float new_time);

 void Clock :: setDTime(float new_time);

 void Clock :: setCollisionEndTime(float new_time);

 void Clock :: incrementDTime();

 void Clock :: reset();

 float clock; //simulation clock

 float d_clock; //clock to determine slot timing

 float collision_end_time; //the time at which collision ends

};

#endif

150

C-5 EVENTLIST.CPP

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "eventList.h"

float infiniteB = 1.0 * pow (10.0, 30.0);

EventList :: EventList() {

 //for all stations...

 for (int q = 0; q < MAX_STATIONS; q++)

 {

 for (int r = 0; r < 4; r++)

 {

 //set event times to infinite

 event_time[q][r] = infiniteB;

 //get a random number

 x = (float) rand();

 x = x * FACTOR/rand_size;

 //set first event time to random value

 if (r == 0) event_time[q][r] = x;

 }//end of r for loop

 }//end of q loop

}

151

float EventList :: getEventTime(int next_station, int eventType) {

 return event_time[next_station][eventType];

}

float EventList :: nextEventTime() {//set next event time infinitely

large

 next_event_time = infiniteB;

 //scan all stations'...

 for (int i = 0; i < MAX_STATIONS; i++)

 {

 //queues

 for (int j = 0; j < 4; j++)

 {

 //if next event time is after station's event's time

 if (next_event_time > event_time[i][j])

 {

 //set next event time to station's event's time

 next_event_time = event_time[i][j];

 //set station and event of next event to perform

 next_station = i;

 next_event = j;

 }//end of if

 }//end of j for

 }//end of i for

152

 return next_event_time;

}

int EventList :: nextStation() {

 next_event_time = infiniteB;

 //scan all stations'...

 for (int i = 0; i < MAX_STATIONS; i++)

 {

 //queues

 for (int j = 0; j < 4; j++)

 {

 //if next event time is after station's event's time

 if (next_event_time > event_time[i][j])

 {

 //set next event time to station's event's time

 next_event_time = event_time[i][j];

 //set station and event of next event to perform

 next_station = i;

 //next_event = j;

 }//end of if

 }//end of j for

 }//end of i for

153

 return next_station;

}

int EventList :: nextEvent() {

 next_event_time = infiniteB;

 //scan all stations'...

 for (int i = 0; i < MAX_STATIONS; i++)

 {

 //queues

 for (int j = 0; j < 4; j++)

 {

 //if next event time is after station's event's time

 if (next_event_time > event_time[i][j])

 {

 //set next event time to station's event's time

 next_event_time = event_time[i][j];

 //set station and event of next event to perform

 //next_station = i;

 next_event = j;

 }//end of if

 }//end of j for

 }//end of i for

154

 return next_event;

}

void EventList :: setEventTime(int next_station, int eventType, float

clock) {

 event_time[next_station][eventType] = clock;

}

void EventList :: initialize() {

 double x = 0.0;

 // Initialize the event list

 for (int i = 0; i < MAX_STATIONS; i++)

 {

 for (int j = 0; j < 4; j++)

 {

 event_time[i][j] = infiniteB;

 x = (float) rand();

 if (j == 0)

 event_time[i][j] = x;

 }

 }

}

155

C-6 EVENTLIST.H

#ifndef _EVENTLIST_H

#define _EVENTLIST_H

#include <math.h>

#include "constants.h"

class EventList {

public:

 EventList :: EventList();

 float EventList :: getEventTime(int next_station, int eventType);

 float EventList :: nextEventTime();

 int EventList :: nextStation();

 int EventList :: nextEvent();

 void EventList :: setEventTime(int next_station, int eventType,

float clock);

 void EventList :: initialize();

 float event_time [MAX_STATIONS] [4]; //time of occurrence of event

 float x;

 float rand_size;

 float next_event_time;

 int next_station;

 int next_event;

};

#endif

156

C-7 IDLIST.CPP

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "idList.h"

IdList :: SelectIdNumber() {

 // Select an identification for the arriving message

 //set identification number to -1

 id_number = -1;

 //for all i less than number of ids

 for (int i = 0; i < ID_SIZE; i++)

 {

 //if 'flag' at i is zero

 if (id_list[i] == 0)

 {

 //set id number of packet to i

 id_number = i;

 //set 'flag' at i to one

 id_list[i] = 1;

 break;

 }

 //if id number was available continue

157

 if (id_number != -1) continue;

 }

 //if id number wasn't changed, either id's are gone or there

 //is a problem with the id list...

 if (id_number == -1)

 {

 //inform user to check id list and stop program

 printf("Check the ID-list.");

 exit(1);

 }

 return id_number;

}

IdList :: IdList() {

 //set start time and id list of all stations to zero

 for (int k = 0; k < ID_SIZE; k++)

 {

 start_time[k] = 0.0;

 id_list[k] = 0;

 }

}

void IdList :: setStartTime(int id_number, float clock){

 start_time [id_number] = clock;

}

158

float IdList :: getStartTime(int id_number) {

 return start_time[id_number];

}

IdList :: setIdList(int id_number, int number) {

 id_list[id_number] = number;

}

void IdList :: initialize(){

 for (int i = 0; i < ID_SIZE; i++)

 {

 id_list[i] = 0;

 start_time[i] = 0.0; // Starting time of these packets

 }

}

159

C-8 IDLIST.H

#ifndef _IDLIST_H

#define _IDLIST_H

#include <math.h>

#include "constants.h"

class IdList {

public:

 IdList :: IdList();

 int IdList :: SelectIdNumber();

 IdList :: setIdList(int id_number, int number);

 void IdList :: setStartTime(int id_number, float clock);

 float IdList :: getStartTime(int id_number);

 float start_time [ID_SIZE]; // starting time of packet

 int id_list [ID_SIZE]; // array of id_numbers

 int id_number;

 void IdList :: initialize();

};

#endif

160

C-9 NETWORK.CPP

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "network.h"

Network :: Network(float persistence) {

 if (persistence >= 0.0 && persistence <= 1.0)

 p = persistence;

}

void Network :: setPersistence(float persistence)

 {

 p = persistence;

 }

bool Network :: isPersistent()

 {

 if (p == 0.0)

 return false;

 else

 return true;

 }

161

float Network :: getPersistence()

 {

 return p;

 }

void Network :: setChannel(float status)

 {

 ch_busy = status;

 }

bool Network :: isChannelFree()

 {

 if (ch_busy == 0.0)

 return true;

 else

 return false;

 }

162

C-10 NETWORK.H

#ifndef _NETWORK_H

#define _NETWORK_H

#include <math.h>

#include "constants.h"

class Network {

public:

 Network :: Network(float persistence);

 void Network :: setPersistence(float persistence);

 bool Network :: isPersistent();

 void Network :: setChannel(float status);

 bool Network :: isChannelFree();

 float Network :: getPersistence();

 float start_time [ID_SIZE]; // starting time of packet

 int id_list [ID_SIZE]; // array of id_numbers

 int id_number;

 float p;

 float ch_busy;

};

#endif

163

C-11 STATIONLIST.CPP

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "stationList.h"

StationList :: StationList() {

 //set queue size at all stations to zero

 for (int i = 0; i < MAX_STATIONS; i++)

 queue_size[i]=0;

}

StationList :: ~StationList() {

}

StationList :: incrementQueue(int next_station) {

 //increment station's queue size (to hold new packet)

 queue_size[next_station] ++ ;

 //if station's queue size is too big...

 if (queue_size[next_station] > MAX_Q_SIZE)

 {

 //inform user and stop program

 printf("The queue size is large and is = %d\n",

queue_size[next_station]);

164

 exit(1);

 }

}

StationList :: decrementQueue(int next_station) {

 queue_size[next_station]--;

}

StationList :: initialize(){

 // Initialize queue sizes from all stations to 0

 for (int i = 0; i < MAX_STATIONS; i++)

 {

 queue_size[i] = 0;

 }

}

int StationList :: queueSize(int next_station) {

 return queue_size [next_station];

}

void StationList :: setQueueId(int next_station, int size, int id) {

 queue_id[next_station][size] = id;

}

int StationList :: getQueueId(int next_station, int size) {

 return queue_id[next_station][size];

165

}

void StationList :: setIdAttemptStn(int no_attempts, int next_station)

{

 id_attempt_stn[no_attempts] = next_station;

}

int StationList :: getIdAttemptStn(int next_station) {

 return id_attempt_stn[next_station];

}

166

C-12 STATIONLIST.H

#include "log_inst.h"

#ifndef _STATIONLIST_H

#define _STATIONLIST_H

#include <math.h>

#include "constants.h"

class StationList {

public:

 StationList :: StationList();

 StationList :: StationList(int max_stats, int max_queue);

 StationList :: incrementQueue(int next_station);

 StationList :: decrementQueue(int next_station);

 int StationList :: queueSize(int next_station);

 void StationList :: setQueueId(int next_station, int size, int id);

 int StationList :: getQueueId(int next_station, int size);

 void StationList :: setIdAttemptStn(int no_attempts, int

next_station);

 int StationList :: getIdAttemptStn(int next_station);

 StationList :: ~StationList();

 StationList :: initialize();

 int queue_size [MAX_STATIONS]; // current queue size at a

station

167

 int queue_id [MAX_STATIONS][MAX_Q_SIZE]; // array for id_numbers of

packets

 int id_attempt_stn [MAX_STATIONS]; // array to identify

attempting stations

 int next_station;

 int next_event;

 float event_time [MAX_STATIONS] [4]; //time of occurrence of event

 float x;

 float rand_size;

 float next_event_time;

};

#endif

168

APPENDIX D. CSMA/CD UML DIAGRAM

This appendix contains the UML diagrams created by Neil Acantilado for the

2000 winter quarter offering of SW4540 – Software Testing at the Naval Postgraduate

School that the authors were simultaneously taking from Prof. J. Bret Michael.

169

D-1 CONCEPTUAL MODEL

-stationId : int

Station
-packetId : int
-startTime : double

PacketNetwork

1 *

 arrives/departs

1 *

consists

driven-by

ArrivalEventTransmissionAttemptEvent CollisionCheckEvent DepartureEvent

-stationId : int
-time : double

EventEventGenerator generates

specifies-departure-of

specifies-arrival-of

specifies transmission attempt activity

specifies collision check activity

Clock

provides current time

synchronizes

associated-to

Figure D-1: Conceptual Model

170

D-2 ACTIVITY DIAGRAM FOR NETWORK SIMULATION

Read Input Network Parameters

Initialize/Start Network Simulation

Identify Next Pending Network Event

Process Network Event

Update Network Analysis Statistics and Metrics

[Max Packet Departures Reached]

[Max Packet Departures NOT Reached]

Analyze Accumulated Network Data

Schedule Future Events

Update Network Clock

Figure D-2: Activity Diagram for Network Simulation

171

D-3 ACTIVITY DIAGRAM FOR PROCESSING PACKET-ARRIVAL
EVENT

Network Event Identified as Packet Arrival Event

Assign ID to Packet

Add Packet to Station Packet Queue

Schedule Transmission Attempt If Queue W as Previously Empty

Schedule Next Arrival Event For Station

Identify Station Corresponding to Event

Figure D-3: Activity Diagram for Processing Packet-Arrival Events

172

D-4 ACTIVITY DIAGRAM FOR PROCESSING TRANSMISSION-
ATTEMPT EVENTS

Network Event Identified as Transmission Attempt Event

Arbitrarily Choose One Station if Multiple Stations are Attempting to Transmit

Scedule Next Transmission Event for Station Schedule Next Collision Check Event for Station

[Channel is Busy] [Channel is not Busy]

Figure D-4: Activity Diagram for Processing Transmission-Attempt Events

173

D-5 ACTIVITY DIAGRAM FOR PROCESSING COLLISION-CHECK
EVENTS

Network Event Identified as Collision Check Event

Count Number of Transmitting Stations

[Collision occurred] [No collision occurred]

Generate Jamming Signal

Abort All Transmissions

Reschedule All Transmission Attempts After Collision Duration

Schedule Packet Departure Event for Station

Figure D-5: Activity Diagram for Processing Collision-Check Events

174

D-6 ACTIVITY DIAGRAM FOR PROCESSING PACKET-DEPARTURE
EVENTS

Network Event Identified as Packet Departure Event

Identify Station Corresponding to Event

Dequeue Packet from Station Queue

Schedule Next Transmission Attempt Event for Station

Update network measurement variables accordingly

Return Packet ID to Packet ID Pool

Figure D-6: Activity Diagram for Processing Packet-Departure Events

175

D-7 DESIGN CLASS DIAGRAM

+fireNextPendingEvent() : Event
+setFutureEvent(in stationId : int, in type : NetworkEventType, in time : double)
+disableEvent(in stationId : int, in type : NetworkEventType)

NetworkEventManager

+queue(in p : Packet)
+dequeue() : Packet

-stationId

Station

-stationId : int
-startTime : double

Event

consists
«datatype»

PacketQueue -stationId : int
-startTime : double

Packet

1 *

maintains

1

*simulates

type-identified-by

-arrivalEvent = 0
-transmissionAttempt = 1
-collisionCheck = 2
-departure = 3

«enumeration»
NetworkEventType

+startSimulation()

Network

-maxPackets : double
-factor : double
-maxQueueSize : int
-idSize : int
-degreesOfFreedom : int

configures
consists

simulates transmission activity events

simulates packet activity events

+setTime(in time : double)
+getTime() : double

-time : double

SimulationClock

synchronizes

utilizes

synchronizes

assigns/restores id numbers

-maxStations : int
-busRate : double
-packetLength : double
-maxBackoff : double
-persist : double
-jamPeriod : double

NetworkParameters

-arrivalRate : double
-rho : double
-averageDelay : double
-delayConInt : double
-utilization : double
-utilizationConInt : double
-throughput : double
-collisionRate : double

NetworkAnalysisResults

logs network data

+assignId() : int
+resetId(in id : int)

PacketIdAssigner

1

*

generates

-utilization : double
-averageDelay : double
-throughput : double
-collisionRate : double

NetworkSession

1 *

analyzes

Figure D-7: Design Class Diagram

176

D-8 INTERACTION DIAGRAM FOR NETWORK SIMULATION

:NetworkSimulatorMain np:NetworkParameters :Network :NetworkEventManager :Station:NetworkEvent

readParams()

create()

create(np)

create()

init()

create()

start()

PacketQueue

init()

display()

NetworkAnalysisResults

Figure D-8: Interaction Diagram for Network Simulation

177

D-9 INTERACTION DIAGRAM FOR PROCESSING PACKET-
ARRIVAL EVENTS

178

rescheduleEvents(time)

queue(packet)

getTime()

schedule(time)

:Network :NetworkEventManager :Station:Event :PacketQueue :Packet

getNextPendingEvent()

processEvent(event)

getStationId()

:PacketIdAssigner

getStation(stationId)

getPacketId()

getTime()

create(idNumber)

queue(packet)

Clock

Figure D-9: Interaction Diagram for Processing Packet-Arrival Events

D-10 INTERACTION DIAGRAM FOR PACKET-DEPARTURE EVENT

NetworkSession:Network :NetworkEventManager :NetworkEvent :Station :PacketQueue :Packet :PacketIdAssigner Clock

processEvent(event)

getStationId()

getStation(stationId)

getTime()

dequeue()

rescheduleEvents(time)

dequeue()

getTime()

schedule(time)

getId()

restore(idNumber)

updateStatistics()

getNextPendingEvent()

Figure D-10: Interaction Diagram for Packet Departure Event

179

D-11 GENERIC INTERACTION DIAGRAM FOR PROCESSING
TRANSMISSION-ATTEMPT AND COLLISION-ATTEMPT EVENT

:Network :NetworkEventManager :NetworkEvent Clock

getNextPendingEvent()

processEvent(event)

getStationId()

getStation(stationId)

getTime()

rescheduleEvents(time)

getTime()

schedule(time)

process(event)

Figure D-11: Generic Interaction Diagram for Processing Transmission-Attempt and

Collision Attempt Event

180

D-12 COLLABORATION DIAGRAM FOR PROCESSING PACKET-ARRIVAL
EVENTS

181

:Packet

:Network :EventManager

:Stations :Evente:Event

3: processEvent(e)

4: stationId=getStationiId()
5: time=getTime()
6:eventType=getEventType()
15: update(newTime)

7: s = get(stationId)

p:Packet

9: [new packet] create(id, time)

:PacketIdAssigner

s:Station

1: event=getNextPendingEvent()
13: scheduleArrivalEvent(stationId, newTime)

2: e = get()
14: scheduleArrivalEvent(stationId, newTime)

:Clock

10: queue(p)

8: id=getPacketId() 12: newTime = getTime()

11: queue(p)

Figure D-12: Collaboration Diagram for Processing Packet-Arrival Events

D-13 COLLABOARION DIAGRAM FOR PROCESSINGG PACKET-
DEPARTURE EVENTS

182

:Stations :Evente:Event

:Packet

:Network :EventManager

3: processEvent(e)

4: stationId=getStationiId()
5: time=getTime()
6:eventType=getEventType()

7: s = get(stationId)

p:Packet

10: id=getId()

:PacketIdAssigner

s:Station

1: event=getNextPendingEvent()
13: [station buffer size > 1]

13.1 scheduleTransAttEvent(stationId, newTime)
14: [station buffer size == 0]

14.1: disableTransAttEvent(stationId)
14.2: disableCollChkEvent(stationId)

2: e = get()

:Clock

8: p=dequeue()

12: newTime = getTime()

9: p=dequeue()

11: restoreId(id)

NetworkAnalysisResults
15: updateStatistics()

Figure D-13: Collaboration Diagram for Processing Packet-Diagram Events

D-14 COLLABORATION DIAGRAM FOR PROCESSING
TRANSMISSION-ATTEMPT EVENTS

:Network :EventManager

:Evente:Event

3: processEvent(e)

4: stationId=getStationiId()
5: time=getTime()
6:eventType=getEventType()

2: e = get()

8.2: disableTransAttEvent(stationId)
9: [channel busy]

9.1: scheduleTransAttEvent(stationId, newTime)
9.2: disableCollChkEvent(stationId)

7: newTime = getTime()

1: event=getNextPendingEvent()
8: [channel NOT busy]

8.1: scheduleCollChkEvent(stationId,, newTime)

:Clock

Figure D-14: Collaboration Diagram for Processing Transmission-Attempt Events

183

D-15 COLLABORATION DIAGRAM FOR PROCESSING COLLISION-CHECK
EVENTS

:Network :EventManager

:Evente:Event

3: processEvent(e)

4: stationId=getStationiId()
5: time=getTime()
6:eventType=getEventType()

2: e = get()

8.1*: [i:=1 to numStations] disableCollChkEvent()
8.2*: [i:=1 to numStations] scheduleTransAttEvent(stationId, newTime)

9: [only one station transmitting]
9.1: scheduleTransAttEvent(stationId, newTime)
9.2: disableCollChkEvent(stationId)

7: newTime = getTime()

1: event=getNextPendingEvent()
8: [multiple stations transmitting]

:Clock

Figure D-15: Collaboration Diagram for Processing Collision-Check Events

184

APPENDIX E. TESTING TOOL METRICS RECORD SHEET

This appendix contains a form for recording the measurements obtained when

applying our proposed metrics to a software testing tool. If a metric has sub-metrics,

blanks are available for recording the sub-metrics directly below the metric.

185

Testing Tool Metric Record Sheet for ________________ (TESTING TOOL)

Human Interface Design (HID) _________
Average Keyboard-to-Mouse Switches (KMS) _________
Average Input Fields per Function (IFPF) _________
Average Length of Input Fields (ALIF) _________
Button Recognition (BR) _________

Maturity & Customer Base (MCB) _________
Maturity (years of tool existence) (M) _________
Customer Base (number of users) (CB) _________
Projects of similar size using tool (P) _________

Tool Management (TM) _________
Number of Access Levels (NAL) _________
Information control methods (ICM) _________

Ease of Use (EU) _________
Learning Time for First-time Users (LTFU) _________
Retainability of procedural knowledge by frequent users (RFU) _________
Retainability of procedural knowledge by casual users (RCU) _________
Operational Time for Frequent Users (OTFU) _________
Operational Time for Casual Users (OTCU) _________

User Control (UC) _________

Sum of different portions & portion combinations that can be tested

Test Case Generation (TCG) _________
Level of Automated Test Case Generation (ATG) _________
Level of Test Case Reuse Functionality (TRF) _________

Tool Support (TS) _________

Average Response Time during normal working hours (ART) _________
Average Response Time after hours (ARTAH) _________
Average Time to Search Documentation (ATSD) _________
Documentation Inadequacy (# of unsuccessful searches) (DI) _________
Response to Product Surveys (RPS) _________

Reliability (Rel) _________

Mean Time between Failures (MTF)

Maximum Number of Parameters (MNP) _________
Maximum number of parameters allowed in one project

Response Time (RT) _________
Average Response Time

186

Estimated Return on Investment (EROI) _________
Estimated Productivity Gain (EPG) _________
Estimated Testing Time without tool (ETT) _________
Average Cost of One Testing Hour (ACTH) _________
Estimated Income Increase (EII) _________
Estimated Tool Implementation Cost (ETIC) _________
Estimated Quality Gain (EQC) _________
Estimated Hours of Customer Support per Project (EHCS) _________
Average Cost of One Hour of Customer Support (ACCS) _________

Metric Suites Supported _________
 McCabe _________

Function Points _________
Halstead _________

Features Support (FS) _________
Extendable (tester allowed to write functions to extend tool) (E) _________
Database open for use by testers (DB) _________
Integrates with software development tools (I) _________

Reporting Features (RF) _________
Summary Report automatically generated (SR) _________
Exportable Reports for viewing external to tool (ER) _________

187

Additional Metrics for Application to OO Software

Maximum Number of Classes (MNC) _________
Maximum number of classes allowed in one project

Object-Oriented Software Quality Metrics (OOSWM) _________
Chidamber & Kemerer Metric Suite
 Weighted methods per class _________

Depth of inheritance tree _________
Number of children _________
Coupling between object classes _________
Response for a class _________

Lie and Henry Metric Suite

Message Passing Coupling (MPC) _________
Data Abstraction Coupling (DAC) _________

Henry and Kafura/Shepperd

Information Flow Complexity (IFC) _________

Lorenz and Kidd Metric Suite
 Number of scenarios scripts (NSS) _________

Number of key classes (NKC) _________
Number of messages sent by methods _________
Number of parameters used by operation _________
Number of subsystems (NSUB) _________
Total number of operations + number of attributes _________
Number of operations overridden by subclass (NOO) _________
Number of operations added by a subclass (NOA) _________
Specialization index (SI) _________
Class hierarchy nesting level _________

McCabe Object-Oriented Software Metrics
 Maximum Cyclomatic Complexity _________
 Hierarchy Quality _________

188

APPENDIX F. CSMA/CD FLOW CHART

Figure F-1: CS MA/CD Simulation Program Flow Chart17

17 Sadiku, M. and Ilyas, M., Simulation of Local Area Networks, Boca Raton, Florida. CRC Press,
1994, pp. 111.

189

THIS PAGE INTENTIONALLY LEFT BLANK

190

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA 93943-5101

3. Professor Bret Michael
Naval Postgraduate School
bmichael@cs.nps.navy.mil

4. Professor Richard Riehle
Naval Postgraduate School
rdriehle@nps.navy.mil

5. LT Ray Buettner
Naval Postgraduate School
rrbuettn@nps.navy.mil

6. Professor Mantak Shing
Naval Postgraduate School
shing@nps.navy.mil

7. Dr. William Bryzinski
Software Productivity Consortium
bryk@software.org

8. Dr. Reginald Meeson
Institute for Defense Analyses
meeson@ida.org

9. Mr. Robert V. Binder
RBSC Corporation
rbinder@rbsc.com

10. Dr. Jeffrey Voas
Cigital
jmvoas@cigital.com

191

11. Prof. Richard Kemmerer
University of California, Santa Barbara
kemm@cs.ucsb.edu

12. Mr. Neil Acantilado
SPAWAR Systems Center, San Diego
nacantil@spawar.navy.mil

13. Dr. Jeffrey Besser
SPAWAR Systems Center, San Diego
besser@spawar.navy.mil

192

	TABLE OF CONTENTS
	I.INTRODUCTION
	A.PROBLEM STATEMENT
	B.RESEARCH ISSUES
	1.Identifying Metrics
	2.Testing of Procedural versus Object-oriented Source Code
	3.Evaluating Tools

	C.CASE STUDY: CSMA/CD LAN DISCRETE-EVENT SIMULATION PROGRAM

	II.RELATED WORK
	A.IEEE STANDARD 1175 WORKING GROUP’S TOOL-EVALUAT
	1.Analyzing User Needs
	2.Establishing Selection Criteria
	3.Tool Search
	4.Tool Selection
	5.Reevaluation
	6.Summary

	B.INSTITUTE FOR DEFENSE ANALYSES REPORTS
	C.SOFTWARE TECHNOLOGY SUPPORT CENTER’S SOFTWARE T

	III.METHODOLOGY
	A.TOOL SEARCH
	1.BoundsChecker
	a.Summary
	b.Features

	2.C-Cover
	a.Summary
	b.Features

	3.CTC++ (Test Coverage Analyzer for C/C++)
	a.Summary
	b.Features

	4.Cantata++
	a.Summary
	b.Features

	5.ObjectChecker/Object Coverage/ObjectDetail
	a.Summary
	b.Features

	6.Panorama C/C++
	a.Summary
	b.Features

	7.TCAT C/C++
	a.Summary
	b.Features

	B.TOOLS SELECTED FOR EVALUATION
	1.LDRA TESTBED
	a.Summary
	b.Static Analysis Features
	Main Static Analysis is the kernel module of the LDRA Testbed system. All software requiring LDRA Testbed analysis must first be processed by Main Static Analysis.
	Main Static Analysis produces the following:
	Complexity Analysis:Complexity measures can be computed for procedures, files and even across an entire system. Complexity Analysis analyzes the subject code, reporting on its underlying structure on a procedure-by-procedure basis.
	2.)Metrics Report:Complexity metrics are reported in the Metrics Report. This configurable report breaks down each metric on either a file-by-file or a procedure-by-procedure basis and stipulates whether the value has passed the quality model or not.
	Complexity Metric Production: In order to control the quality of software products, LDRA Testbed produces the following complexity metrics:
	Control Flow Knots: Knot analysis measures the a
	Cyclomatic Complexity: Cyclomatic Complexity reflects the decision-making structure of the program. It is recommended that for any given module the metric should not exceed ten. This value is an indicator of modules that may benefit from redesign. It
	Reachability: All executable statements should be reachable by following a control-flow path from the start of the program. Unreachable code consists of statements for which there is no such path. LDRA Testbed marks all such lines as being unreachable
	Looping Depth: The maximum depth of the control flow loops is a factor in the overall readability, complexity and efficiency of the code.
	LCSAJ Density: The LCSAJ density is a maintainability metric. If a line of code is to be changed, then the density informs the user how many test paths (LCSAJs) will be affected by that change. If the density is high, then confidence that the change
	An LCSAJ is a linear sequence of executable code commencing either from the start of the program or from a point to which control flow may jump. It is terminated either by a specific control-flow jump or by the end of the program. The linear code sequen
	Comments: To control readability and maintainability, the following are measured:
	3.)Quality Report:The Quality Report creates views of the quality of the source code. The report can reflect the quality of a single file, the entire system or a group of unrelated source files, and can be produced in either ASCII or HTML format.

	c.Dynamic Analysis Features

	2.Parasoft Testing Products
	a.Summary
	b.C++ Test features
	c.CodeWizard features
	d.Insure++ features

	3.Telelogic Products
	a.Summary
	b.Features

	C.SOFTWARE QUALITY METRICS
	1.Procedural (Traditional) Software Metrics
	2.Object-Oriented Software Metrics

	D.PROPOSED SOFTWARE TESTING TOOL METRICS
	Metrics for Tools Testing Procedural Software
	a.Human Interface Design (HID)
	b.Maturity & Customer Base (MCB)
	c.Tool Management (TM)
	d.Ease of Use (EU)
	e.User Control (UC)
	f.Test Case Generation (TCG)
	g.Tool Support (TS)
	h.Estimated Return on Investment (EROI)
	i.Reliability (Rel)
	j.Maximum Number of Classes (MNC)
	k.Maximum Number of Parameters (MNP)
	l.Response Time (RT)
	m.Features Support (FS)

	2.Metrics for Tools Used to Test Object-Oriented Software
	3.Difference between Procedural Testing Tool Metrics and Object-oriented Testing Tool Metrics

	E.PERFORM TESTS
	1.LDRA Testbed
	a.Set-up
	b.Problems During Execution

	2.Parasoft
	a.Set-up
	b.Problems During Execution

	3.Telelogic
	a.Set-up
	b.Problems During Execution

	IV.ANALYSIS
	A.TOOL PERFORMANCE
	LDRA Testbed
	a.Procedural
	b.Functional
	c.Object-Oriented
	d.Reporting Characteristics

	Parasoft
	a.Procedural
	b.Functional
	c.Object-Oriented
	d.Reporting Characteristics

	3.Logiscope
	a.Procedural
	b.Functional
	c.Object-Oriented
	d.Reporting Characteristics

	B.TESTING TOOL METRICS
	1.Human Interface Design
	2.Test Case Generation
	3.Reporting Features
	4.Response Time
	5.Feature Support
	6.Metric Suites Supported
	7.Maximum Number of Classes
	8.Object-Oriented Software Quality Metrics
	9.Tool Management
	10.User Control
	11.Other Testing Tool Metrics

	V.RESULTS
	A.TESTING TOOL RESULTS
	B.TESTING TOOL METRIC RESULTS

	VI.CONCLUSION
	A.SUMMARY
	B.RECOMMENDATIONS FOR FUTURE WORK

	APPENDIX A. PROCEDURAL CODE
	APPENDIX B. FUNCTIONAL CODE
	APPENDIX C. OBJECT-ORIENTED CODE
	C-1 SIMULATION.CPP
	C-2 CONSTANTS.H
	C-3 CLOCK.CPP
	C-4 CLOCK.H
	C-5 EVENTLIST.CPP
	C-6 EVENTLIST.H
	C-7 IDLIST.CPP
	C-8 IDLIST.H
	C-9 NETWORK.CPP
	C-10 NETWORK.H
	C-11 STATIONLIST.CPP
	C-12 STATIONLIST.H

	APPENDIX D. CSMA/CD UML DIAGRAM
	D-1 CONCEPTUAL MODEL
	D-2 ACTIVITY DIAGRAM FOR NETWORK SIMULATION
	D-3 ACTIVITY DIAGRAM FOR PROCESSING PACKET-ARRIVAL EVENT
	D-4 ACTIVITY DIAGRAM FOR PROCESSING TRANSMISSION-ATTEMPT EVENTS
	D-5 ACTIVITY DIAGRAM FOR PROCESSING COLLISION-CHECK EVENTS
	D-6 ACTIVITY DIAGRAM FOR PROCESSING PACKET-DEPARTURE EVENTS
	D-7 DESIGN CLASS DIAGRAM
	D-8 INTERACTION DIAGRAM FOR NETWORK SIMULATION
	D-9 INTERACTION DIAGRAM FOR PROCESSING PACKET-ARRIVAL EVENTS
	D-10 INTERACTION DIAGRAM FOR PACKET-DEPARTURE EVENT
	D-11 GENERIC INTERACTION DIAGRAM FOR PROCESSING TRANSMISSION-ATTEMPT AND COLLISION-ATTEMPT EVENT
	D-12 COLLABORATION DIAGRAM FOR PROCESSING PACKET-ARRIVAL EVENTS
	D-13 COLLABOARION DIAGRAM FOR PROCESSINGG PACKET-DEPARTURE EVENTS
	D-14 COLLABORATION DIAGRAM FOR PROCESSING TRANSMISSION-ATTEMPT EVENTS
	D-15 COLLABORATION DIAGRAM FOR PROCESSING COLLISION-CHECK EVENTS

	APPENDIX E. TESTING TOOL METRICS RECORD SHEET
	APPENDIX F. CSMA/CD FLOW CHART
	INITIAL DISTRIBUTION LIST

